DSC61XX ## **Ultra-Small, Ultra-Low Power MEMS Oscillator** #### **Features** - Wide Frequency Range: 2 KHz to 100 MHz - Ultra–Low Power Consumption: 3 mA/12 μA (Active/Standby) - · Ultra-Small Footprints - 1.6 mm × 1.2 mm - 2.0 mm × 1.6 mm - $2.5 \text{ mm} \times 2.0 \text{ mm}$ - $-3.2 \text{ mm} \times 2.5 \text{ mm}$ - Frequency Select Input Supports 2 Predefined Frequencies - · High Stability: ±25, ±50 ppm - · Wide Temperature Range - Industrial: -40°C to 85°C - Ext. Commercial: -20° to 70°C - · Excellent Shock & Vibration Immunity - Qualified to MIL-STD-883 - · High Reliability - 20x Better MTF Than Quartz Oscillators - Supply Range of 1.71V to 3.63V - Short Sample Lead Time: <2 weeks - · Lead Free & RoHS Compliant #### **Applications** - Low Power/portable Applications IoT, Embedded/smart Devices - Consumer Home Healthcare, Fitness Devices, Home Automation - Automotive Rear View/surround View Cameras, Infotainment System - Industrial Building/ Factory Automation, Surveillance Camera #### **General Description** The DSC61xx family of MEMS oscillators combines the industry leading low power consumption and ultra-small packages with exceptional frequency stability and jitter performance over temperature. The single-output DSC61xx MEMS oscillators are excellent choices for use as clock references in small, battery-powered devices such as wearable and Internet of Things (IoT) devices in which small size, low power consumption, and long-term reliability are paramount. They also meet the stringent mechanical durability and reliability requirements within Automotive Electronics Council standard Q100 (AEC-Q100), so they are well suited for under-hood applications as well. The DSC61xx family is available in ultra-small $1.6~\text{mm} \times 1.2~\text{mm}$ and $2.0~\text{mm} \times 1.6~\text{mm}$ packages. Other package sizes include: $2.5~\text{mm} \times 2.0~\text{mm}$ and $3.2~\text{mm} \times 2.5~\text{mm}$. These packages are "drop-in" replacements for standard 4-pin CMOS quartz crystal oscillators. #### **Package Types** ## **Block Diagram** #### 1.0 ELECTRICAL CHARACTERISTICS ## **Absolute Maximum Ratings** | Supply Voltage | | |--------------------------------|-------------------------------| | Input Voltage, V _{IN} | | | ESD Protection | 4000V HBM. 400V MM. 2000V CDM | #### **DSC61XX ELECTRICAL CHARACTERISTICS** | Electrical Characteristics: Unless otherwise indicated, V_{DD} = 1.8V –5% to 3.3V +10%, T_A = –40°C to 85°C. | | | | | | | | | |---|-------------------|---------------------|------|---------------------|-------|--|--|--| | Parameters | Sym. | Min. | Тур. | Max. | Units | Conditions | | | | Supply Voltage, Note 1 | V_{DD} | 1.71 | _ | 3.63 | V | _ | | | | Active Supply Current | I _{DD} | _ | 3.0 | _ | mA | F_{OUT} = 27 MHz, V_{DD} = 1.8V,
No Load | | | | Standby Supply Current | I _{STBY} | _ | 12 | _ | | V _{DD} = 1.8/2.5V | | | | Note 2 | SIBY | _ | 80 | _ | μΑ | V _{DD} = 3.3V | | | | Frequency Stability Note 3 | Δf | _ | _ | ±25
±50 | ppm | All temp ranges | | | | A | ٨٤ | _ | _ | ±5 | | 1st year @25°C | | | | Aging | Δf | _ | _ | ±1 | ppm | Per year after first year | | | | Startup Time | t _{SU} | _ | _ | 1.3 | ms | From 90% V _{DD} to valid clock output, T = 25°C | | | | Input Logic Levels Note 4 | V_{IH} | 0.7xV _{DD} | _ | _ | V | | | | | Input Logic High
Input Logic Low | V _{IL} | _ | _ | 0.3xV _{DD} | V | _ | | | | Output Disable Time
Note 5 | t _{DA} | _ | _ | 200+Period | ns | | | | | Output Enable Time
Note 6 | t _{EN} | _ | _ | 1 | μs | | | | | Enable Pull-up Resistor
Note 7 | _ | _ | 300 | _ | kΩ | If configured | | | | Output Logic Levels | V _{OH} | 0.8xV _{DD} | | _ | V | I = 6mA | | | | Output Logic High
Output Logic Low | V _{OL} | _ | _ | 0.2xV _{DD} | V | I = -6mA | | | - Note 1: Pin 4 V_{DD} should be filtered with 0.1 uf capacitor. - 2: Not including current through pull-up resistor on EN pin (if configured). Higher standby current seen at >3.3V V_{DD}. - 3: Includes frequency variations due to initial tolerance, temp. and power supply voltage. - 4: Input waveform must be monotonic with rise/fall time < 10 ms - **5:** Output Disable time takes up to 1 Period of the output waveform + 200 ns. - **6:** For parts configured with OE, not Standby. - 7: Output is enabled if pad is floated or not connected. ## DSC61XX ## **DSC61XX ELECTRICAL CHARACTERISTICS (CONTINUED)** | Electrical Characteristics: Unless otherwise indicated, V_{DD} = 1.8V –5% to 3.3V +10%, T_A = –40°C to 85°C. | | | | | | | | | |---|----------------------------------|-------|------|------|-------------------|--|-----------------------------|--| | Parameters | Sym. | Min. | Тур. | Max. | Units | Conditions | | | | Output Transition Time
Rise Time/Fall Time | t _{RX} /t _{FX} | _ | 1 | 1.5 | ns | DSC61X2
High Drive, | V _{DD} = 1.8V | | | | | _ | 0.5 | 1.0 | ns | 20% to 80%
C _L =15 pF | V _{DD} = 2.5V/3.3V | | | | t _{RY} /t _{FY} | _ | 1.2 | 2.0 | ns | DSC61X1
Std Drive,
20% to 80%
C _L =10 pF | V _{DD} = 1.8V | | | | | _ | 1.5 | 2.2 | ns | | V _{DD} = 2.5V/3.3V | | | Frequency | f ₀ | 0.002 | _ | 100 | MHz | Output on F | in 1 for < 1 MHz | | | Output Duty Cycle | SYM | 45 | _ | 55 | % | | _ | | | Davied litter DMC | 1 | _ | 9.5 | 11 | | F _{OUT} = | V _{DD} = 1.8V | | | Period Jitter, RMS | J_{PER} | _ | 7.5 | 9 | ps _{RMS} | 27 MHz | $V_{DD} = 2.5V/3.3V$ | | | Cycle-to-Cycle Jitter (peak) | | _ | 50 | 70 | ps | F _{OUT} = | V _{DD} = 1.8V | | | | J _{Cy–Cy} | _ | 35 | 60 | | 27 MHz | $V_{DD} = 2.5 V/3.3 V$ | | - **Note 1:** Pin 4 V_{DD} should be filtered with 0.1 uf capacitor. - 2: Not including current through pull-up resistor on EN pin (if configured). Higher standby current seen at >3.3V V_{DD}. - 3: Includes frequency variations due to initial tolerance, temp. and power supply voltage. - 4: Input waveform must be monotonic with rise/fall time < 10 ms - 5: Output Disable time takes up to 1 Period of the output waveform + 200 ns. - **6:** For parts configured with OE, not Standby. - **7:** Output is enabled if pad is floated or not connected. ## **TEMPERATURE SPECIFICATIONS** | Parameters | Sym. | Min. | Тур. | Max. | Units | Conditions | |--------------------------------|----------------|------|------|------|-------|--------------| | Temperature Ranges | | | | | | | | Junction Operating Temperature | T _J | _ | +150 | _ | °C | _ | | Storage Temperature Range | T _A | -55 | _ | +150 | °C | _ | | Soldering Temperature | T _S | _ | +260 | _ | °C | 40 Sec. Max. | #### 2.0 PIN DESCRIPTIONS The descriptions of the pins are listed in Table 2-1. TABLE 2-1: DSC6101/03/11/13/21/23/41/43/51/53/61/63 PIN FUNCTION TABLE (OUTPUT FREQUENCY ≥1MHZ) | Pin Number | Pin Name | Pin Type | Description | |------------|----------|----------|---| | | OE | | Output Enable: H = Specified Frequency Output, Note 1 L = Output is high impedance | | 1 | STDBY | I | Standby: H = Specified Frequency Output, Note 1 L = Output is high impedance. Device is in low power mode, supply current is at I _{STBY} | | | FS | | Frequency Select: H = Output Frequency 1, Note 2
L = Output Frequency 2 | | 2 | GND | Power | Power supply ground | | 3 | Output | 0 | Oscillator clock output | | 4 | VDD | Power | Power supply | - Note 1: DSC610x/1x/2x has 300 k Ω internal pull-up resistor on pin1. DSC614x/5x/6x has no internal pull-up resistor on pin1 and needs external pull-up or being driven by other chip. - 2: Two pre-programmed frequencies can be configured at http://clockworks.microchip.com/timing/ - 3: Bypass with $0.1\mu F$ capacitor placed as close to V_{DD} pin as possible. TABLE 2-2: DSC6183 PIN FUNCTION TABLE (OUTPUT FREQUENCY < 1MHZ) | Pin Number | Pin Name | Pin Type | Description | |------------|----------|----------|-----------------------------------| | 1 | Output | 0 | Kilohertz Oscillator clock output | | 2 | GND | Power | Power supply ground | | 3 | DNC | DNC | Do Not Connect | | 4 | VDD | Power | Power supply, Note 1 | Note 1: Bypass with 0.1 μF capacitor placed as close to V_{DD} pin as possible. DSC61xx family is available in multiple output driver configurations. The standard-drive (61x1) and high-drive (61x2) deliver respective output currents of greater than 3 mA and 6 mA at 20%/80% of the supply voltage. For heavy loads of 15 pF or higher, the high-drive option is recommended. ## 3.0 OUTPUT WAVEFORM ## FIGURE 3-1: OUTPUT WAVEFORM ## DSC61XX ## 4.0 TEST CIRCUIT FIGURE 4-1: TEST CIRCUIT ## 5.0 BOARD LAYOUT (RECOMMENDED) ## FIGURE 5-1: BOARD LAYOUT (RECOMMENDED) ## 6.0 SOLDER REFLOW PROFILE FIGURE 6-1: SOLDER REFLOW | MSL 1 @ 260°C refer to JSTD-020C | | | | | | |-----------------------------------|--------------|--|--|--|--| | Ramp-Up Rate (200°C to Peak Temp) | 3°C/Sec Max. | | | | | | Preheat Time 150°C to 200°C | 60-180 Sec | | | | | | Time maintained above 217°C | 60-150 Sec | | | | | | Peak Temperature | 255-260°C | | | | | | Time within 5°C of actual Peak | 20-40 Sec | | | | | | Ramp-Down Rate | 6°C/Sec Max. | | | | | | Time 25°C to Peak Temperature | 8 min. Max. | | | | | #### 7.0 PACKAGING INFORMATION ## 4-Lead VFLGA 1.6 mm x 1.2 mm Package Outline ## 4-Lead Very Thin Fine Pitch Land Grid Array (ARA) - 1.6x1.2 mm Body [VFLGA] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Microchip Technology Drawing C04-1199A Sheet 1 of 2 ## 4-Lead VFLGA 1.6 mm x 1.2 mm Package Outline ## 4-Lead Very Thin Fine Pitch Land Grid Array (ARA) - 1.6x1.2 mm Body [VFLGA] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | MILLIMETERS | | | | |--------------------------------------|------------------|----------|----------|-------| | Dimension | Dimension Limits | | NOM | MAX | | Number of Terminals | N | | 4 | | | Terminal Pitch | е | | 1.20 BSC | | | Terminal Pitch | e1 | 0.75 BSC | | | | Overall Height | Α | 0.79 | 0.84 | 0.89 | | Standoff | A1 | 0.00 | 0.02 | 0.05 | | Substrate Thickness (with Terminals) | A3 | 0.20 REF | | | | Overall Length | D | | 1.60 BSC | | | Overall Width | Е | | 1.20 BSC | | | Terminal Width | b1 | 0.25 | 0.30 | 0.35 | | Terminal Width | b2 | 0.325 | 0.375 | 0.425 | | Terminal Length | L | 0.30 | 0.35 | 0.40 | | Terminal 1 Index Chamfer | CH | - | 0.125 | - | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Package is saw singulated - 3. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-1199A Sheet 2 of 2 #### 4-Lead VFLGA 1.6 mm x 1.2 mm Recommended Land Pattern ## 4-Lead Very Thin Fine Pitch Land Grid Array (ARA) - 1.6x1.2 mm Body [VFLGA] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging RECOMMENDED LAND PATTERN | | MILLIMETERS | | | | |-----------------------------|-------------|----------------|----------|------| | Dimension | Limits | MIN | NOM | MAX | | Contact Pitch | E1 | | 1.20 BSC | | | Contact Pitch | E2 | | 1.16 BSC | | | Contact Spacing | С | | 0.75 | | | Contact Width (X3) | X1 | | | 0.35 | | Contact Width | X2 | | | 0.43 | | Contact Pad Length (X6) | Υ | | | 0.50 | | Space Between Contacts (X4) | G1 | 0.85 | | | | Space Between Contacts (X3) | G2 | 0.25 | | | | Contact 1 Index Chamfer | СН | 0.13 X 45° REF | | | #### Notes: Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing C04-3199A ## 4-Lead VLGA 2.0 mm x 1.6 mm Package Outline ## 4-Lead Very Thin Fine Pitch Land Grid Array (ASA) - 2.0x1.6 mm Body [VFLGA] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Microchip Technology Drawing C04-1200A Sheet 1 of 2 ## 4-Lead VLGA 2.0 mm x 1.6 mm Package Outline (Continued) ## 4-Lead Very Thin Fine Pitch Land Grid Array (ASA) - 2.0x1.6 mm Body [VFLGA] **bte:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | N | ILLIMETER | S | | |--------------------------------------|-----|-----------|----------|------| | Dimension | MIN | NOM | MAX | | | Number of Terminals | Ν | | 6 | | | Terminal Pitch | е | | 1.55 BSC | | | Terminal Pitch | e1 | 0.95 BSC | | | | Overall Height | Α | 0.79 | 0.84 | 0.89 | | Standoff | A1 | 0.00 | 0.02 | 0.05 | | Substrate Thickness (with Terminals) | A3 | 0.20 REF | | | | Overall Length | D | | 2.00 BSC | | | Overall Width | E | | 1.60 BSC | | | Terminal Width | b1 | 0.30 | 0.35 | 0.40 | | Terminal Width | b2 | 0.40 | 0.45 | 0.50 | | Terminal Length | L | 0.50 | 0.55 | 0.60 | | Terminal 1 Index Chamfer | CH | - | 0.15 | - | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Package is saw singulated - 3. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. $\label{eq:REF:Reference Dimension, usually without tolerance, for information purposes only. \\$ Microchip Technology Drawing C04-1200A Sheet 2 of 2 ## 4-Lead VFLGA 2.0 mm x 1.6 mm Package Outline ## 4-Lead Very Thin Fine Pitch Land Grid Array (ASA) - 2.0x1.6 mm Body [VFLGA] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging #### RECOMMENDED LAND PATTERN | | MILLIMETERS | | | | |-----------------------------|-------------|----------------|------|------| | Dimension | MIN | NOM | MAX | | | Contact Pitch | Е | | | | | Contact Spacing | С | | 0.95 | | | Contact Width (X4) | X1 | | | 0.50 | | Contact Width (X2) | X2 | | | 0.40 | | Contact Pad Length (X6) | Υ | | | 0.70 | | Space Between Contacts (X4) | G1 | 1.05 | | | | Space Between Contacts (X3) | G2 | 0.25 | | | | Contact 1 Index Chamfer | CH | 0.13 X 45° REF | | | #### Notes: 1. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing C04-3200A ## 4-Lead VLGA 2.5 mm x 2.0 mm Package Outline ## 4-Lead Very Thin Land Grid Array (AUA) - 2.5x2.0 mm Body [VLGA] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging Microchip Technology Drawing C04-1202A Sheet 1 of 2 ## 4-Lead VLGA 2.5 mm x 2.0 mm Package Outline (Continued) ## 4-Lead Very Thin Land Grid Array (AUA) - 2.5x2.0 mm Body [VLGA] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | MILLIMETERS | | | | |--------------------------------------|-------------|----------------|----------|------| | Dimension | MIN | NOM | MAX | | | Number of Terminals | Ν | | 4 | | | Terminal Pitch | е | | 1.65 BSC | | | Terminal Pitch | e1 | 1.25 BSC | | | | Overall Height | Α | 0.79 0.84 0.89 | | | | Standoff | A1 | 0.00 0.02 0.05 | | | | Substrate Thickness (with Terminals) | A3 | 0.20 REF | | | | Overall Length | D | | 2.50 BSC | | | Overall Width | Е | 2.00 BSC | | | | Terminal Width | b1 | 0.60 | 0.65 | 0.70 | | Terminal Length | L | 0.60 | 0.65 | 0.70 | | Terminal 1 Index Chamfer | СН | - | 0.225 | - | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Package is saw singulated - 3. Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-1202A Sheet 2 of 2 ## 4-Lead VLGA 2.5 mm x 2.0 mm Recommended Land Pattern ## 4-Lead Very Thin Land Grid Array (AUA) - 2.5x2.0 mm Body [VLGA] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging #### RECOMMENDED LAND PATTERN | | MILLIMETERS | | | | |-----------------------------|-------------|----------------|------|------| | Dimension | MIN | NOM | MAX | | | Contact Pitch | Е | 1.65 BSC | | | | Contact Spacing | С | | 1.25 | | | Contact Width (X4) | Х | | | 0.70 | | Contact Pad Length (X6) | Υ | | | 0.80 | | Space Between Contacts (X4) | G1 | 0.95 | | | | Space Between Contacts (X3) | G2 | 0.45 | | | | Contact 1 Index Chamfer | CH | 0.13 X 45° REF | | | #### Notes: Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. Microchip Technology Drawing C04-3202A ## 4-Lead CDFN 3.2 mm x 2.5 mm Package Outline and Recommended Land Pattern **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging ## APPENDIX A: REVISION HISTORY ## **Revision A (September 2016)** • Initial release of DSC61XX Microchip data sheet DS20005624A. NOTES: ## PRODUCT IDENTIFICATION SYSTEM To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office. | DART NO. Y | | <u> </u> | | | | Exa | mples | ·
:: | |---------------------------|--|-------------------------------|--|-------------------------------|---------------------------------|------|-------------|--| | Definition D | X X
utput Package
rive
rength | X

Temperatur
Range | X X -
-
e Frequency Revision
Stability | on Frequency | X

/ Tape
and
Reel | a) | DSC6 | S112JI2A-100.0000: Ultra–Low Power MEMS
Oscillator, Pin1= Standby
with internal Pull–Up, High
Output Drive Strength, | | Device: | DSC61XX: | Ultra-Lo | w Power MEMS Os | cillator | | | | 4-Lead 2.5 mm x 2.0 mm
VFLGA, Industrial Tem-
perature (–40°C to +85°C) | | Pin Definition: | Selection | Pin 1 | Internal Pull Reg | jister | | | | ±25 ppm, Revision A | | | 0 | OE | Pull-up | | | b) | DSC6 | 100 MHz Frequency, Bulk.
6101HE1A-016.0000T: Ultra–Low Powe | | | 1 | STDBY | Pull-up | | | 5) | Dooc | MEMS Oscillator, Pin1= OE | | | 2 | FS | Pull-up | | | | | with Internal Pull-Up, Stan- | | | 4 | OE | None | | | | | dard Output Drive Strength | | | 5 | STDBY | None | | | | | 4-Lead 1.6 mm x1.2 mm
VFLGA, Extended Com- | | | 6 | FS | None | | | | | mercial Temperature | | | 8 | KHz
Output | None | | | | | (–20°C to +70°C)
±50 ppm, Revision A
16 MHz Frequency, Tape | | Output Drive
Strength: | 1
2 | Standard
High | | | | c) | DSC6 | and Reel.
3183ME1A-032k768: Ultra–Low Powel
MEMS Oscillator, Pin1= | | Packages: | C =
J =
M =
H = | 4-Lead 2.
4-Lead 2. | 2 mm x 2.5 mm DFN
5 mm x 2.0 mm VFL
0 mm x 1.6 mm VFL
6 mm x 1.2 mm VFL | _GA
_GA | | | | 32.768 KHz Clock Output
Low Output Drive Strength
4-Lead 2.0 mm x1.6 mm
VFLGA, Extended Com-
mercial Temperature | | Temperature
Range: | E = I = | | -70°C (Extended Co
+85°C (Industrial) | mmercial) | | d) | DSC6 | (-20°C to +70°C)
±50 ppm, Revision A, Bulk
6121Cl2A-001A: Ultra-Low Power MEMS
Oscillator, Pin1= FS with | | Frequency
Stability: | 1 =
2 = | ± 50 ppm
± 25 ppm | | | | | | internal Pull-up, Standard
Output Drive Strength, 4
Lead 3.2 mm x 2.5 mm | | Revision: | A = | Revision | A | | | | | CDFN, Industrial Temperature (-40 to 85□C), ±25 ppm, Revision A, Fre- | | Frequency: | | 001.0000 | ned Frequency betw
MHz and 100.0000 | MHz | | | | quency code = 001A (configured through | | | xxxkxxx = | User-Definand 999.9 | ed Frequency betwo | een 002.000 | kHz | | | ClockWorks), Bulk | | | xxxx = F | requency c | onfiguration code we the part online thro | hen pin 1 = F
ough ClockWo | S.
orks | | | | | Tape and Reel: | Blank =
T = | Bulk
Tape and | Reel | | | Note | i
i
v | Tape and Reel identifier only appears in the catalog part number description. This dentifier is used for ordering purposes and s not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option. | | | | | | | | | | | **Note 1:** Please visit Microchip ClockWorks[®] Configurator Website to configure the part number for customized frequency. http://clockworks.microchip.com/timing/. NOTES: #### Note the following details of the code protection feature on Microchip devices: - · Microchip products meet the specification contained in their particular Microchip Data Sheet. - Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. - There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. - · Microchip is willing to work with the customer who is concerned about the integrity of their code. - Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable." Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act. Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated. Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified. # QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949= #### **Trademarks** The Microchip name and logo, the Microchip logo, AnyRate, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq, KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. ClockWorks, The Embedded Control Solutions Company, ETHERSYNCH, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker, Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A. Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries. GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries. All other trademarks mentioned herein are property of their respective companies. © 2016, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. ISBN: 978-1-5224-0961-8 ## Worldwide Sales and Service #### **AMERICAS** **Corporate Office** 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 http://www.microchip.com/ support Web Address: www.microchip.com Technical Support: Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455 Austin, TX Tel: 512-257-3370 **Boston** Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643 **Dallas** Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 **Detroit** Novi, MI Tel: 248-848-4000 Houston, TX Tel: 281-894-5983 Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 New York NY Tel: 631-435-6000 San Jose, CA Tel: 408-735-9110 Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078 #### ASIA/PACIFIC **Asia Pacific Office** Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889 China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500 China - Dongguan Tel: 86-769-8702-9880 China - Guangzhou Tel: 86-20-8755-8029 China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116 China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431 China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205 China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393 China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760 China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118 China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 #### ASIA/PACIFIC China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130 China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049 India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123 India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632 India - Pune Tel: 91-20-3019-1500 Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310 Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771 Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859 Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068 Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955 Taiwan - Kaohsiung Tel: 886-7-213-7828 Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102 Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350 #### **EUROPE** Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Dusseldorf Tel: 49-2129-3766400 Germany - Karlsruhe Tel: 49-721-625370 Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Italy - Venice Tel: 39-049-7625286 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 Poland - Warsaw Tel: 48-22-3325737 Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91 Sweden - Stockholm Tel: 46-8-5090-4654 **UK - Wokingham** Tel: 44-118-921-5800 Fax: 44-118-921-5820 06/23/16