STRATUM 3E High Stability Oven Stabilized Oscillator OH300 Series

ocxo

2111 Comprehensive Drive Aurora, Illinois 60505 Phone: 630-851-4722 Fax: 630-851-5040

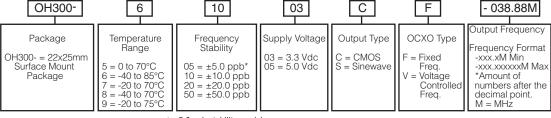
+353-61-472221

www.conwin.com

Description

Connor-Winfield's high stability OH300 OCXO / OCVXCO series are exceptionally precise frequency standard, excellent for use in cellular base stations, test equipment, Synchronous Ethernet, VSAT and Stratum 3E applications

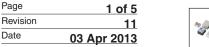
These unique OCXOs and OCVCXOs provide frequency stabilities in the range of ±5 ppb to ±50 ppb, over the commercial, extended commercial or the industrial temperature range. Power requirements are 1.1W over the commercial temperature range and 1.5W over the industrial temperature range after warm-up. Additionally, excellent aging is achieved through the use of overtone SC cut crystals.


The OH300 series is available with CMOS logic or Sinewave output along with Electronic Frequency Tuning. These oscillators provide outstanding phase noise that varies depending on frequency requirements. Allan Variance specifications are rated for primary reference standards. Warm up times are on the order of 5 minutes to 0.10 ppm of final frequency.

Features

Frequency Range: 5 to 40 MHz OCXO - Fixed Frequency OCVCXO - Voltage Controlled Frequency 3.3 Vdc or 5.0 Vdc Operation Available Frequency Stabilities: ± 5.0 ppb, ± 10.0 ppb, ± 20 ppb or ± 50 ppb Available Temperature Ranges: 0 to 70°C, -20 to 70°C, -20 to 75°C, -40 to 70°C or -40 to 85°C Low Phase Noise / Phase Jitter Output: CMOS Logic or Sinewave SMT Package: 22 mm x 25 mm x 12.7 mm Tape and Reel Packaging

RoHS Compliant / Lead Free **Ordering Information**


±5.0 ppb stability models are only available from 0 to 70°C.

Example Part Number:

OH300-61003CF-038.88M = 22x25x12.7mm SMT package, -40 to 85°C temperature range, ±10.0 ppb frequency stability, 3.3 Vdc supply voltage, CMOS square wave output, fixed output frequency OCXO, 38.88 MHz output frequency.

OH300-52005CV-010.0M = 22x25x12.7mm SMT package, 0 to $70^{\circ}C$ temperature range, ± 20.0 ppb frequency stability, 5.0 Vdc supply voltage, CMOS square wave output, voltage controlled output frequency, OCVCXO, 10.0 MHz output frequency.

OH300-75005SV-020.0M = 22x25x12.7mm SMT package, -20 to 70° C temperature range, ± 50.0 ppb frequency stability, 5.0 Vdc supply voltage, Sinewave output, voltage controlled output frequency, OCVCXO, 20.0 MHz output frequency.

Cx210

Bulletin

Page

Date

Attention: System Designers please review Application Note AN2093: System Design Information and Printed Circuit Board Layout Guidelines for OCXO Oscillators. @ www.conwin.com/technologies.html

Aurora, Illinois 60505 Phone: 630-851-4722

Fax: 630-851-5040

www.conwin.com

Absolute Maximum Ratings					
Parameter	Minimum	Nominal	Maximum	Units	Notes
Storage Temperature	-55	-	125	°C	
Supply Voltage - 3.3 Vdc (Vcc)	-0.5	-	4.5	Vdc	
Supply Voltage - 5.0 Vdc (Vcc)	-0.5	-	7.0	Vdc	
Control Voltage (Vc)	-0.5	-	7.0	Vdc	

	On exeting Co	a cifications			
Devenueles	Operating Sp		Massinasson	I Indian	Nistas
Parameter	Minimum	Nominal	Maximum	Units	Notes
Center Frequency: (Fo)	5	-	40	MHz	
Operating Temperature Range:			70	20	
Temperature Code 5	0	-	70	°C	
Temperature Code 6	-40	-	85	°C	
Temperature Code 7	-20	-	70	°C	
Temperature Code 8	-40	-	70	°C	
Temperature Code 9	-20	-	75	°C	
Frequency Calibration:	-0.1	-	0.1	ppm	@ 25°C
Frequency Stability vs. Change in Temperature					
Stability Code 05	-5.0	-	5.0	ppb	1, 2
Stability Code 10	-10.0	-	10.0	ppb	2 2
Stability Code 20	-20.0	-	20.0	ppb	2
Stability Code 50	-50.0	-	50.0	ppb	2
Frequency Stability vs Load	-2.0	-	2.0	ppb	±5%
Frequency Stability vs Voltage	-2.0	-	2.0	ppb	±5%
Aging: Daily:					
5 MHz to 20 MHz	-1.0	-	1.0	ppb/day	3
>20 MHz to 40 MHz	-2.0	-	2.0	ppb/day	3
Aging: First Year:			-		-
5 MHz to 20 MHz	-50	_	50	ppb	
>20 MHz to 40 MHz	-100	_	100	ppb	
Lifetime Tolerance: (20 Years)				- - -	
5 MHz to 20 MHz	-300	_	300	daa	4
>20 MHz to 40 MHz	-500	-	500	ppb	4
Supply Voltage: (Vcc) (Note: Power supply tur		st be > 5 ms to 90		PPS	•
Voltage Code 03	3.13	3.30	3.47	Vdc	5
Voltage Code 05	4.75	5.00	5.25	Vd	5
Power Consumption: Turn-On	1 0	0.00	0.20	• • • • • • • • • • • • • • • • • • • •	
0 to 70°C Models	_	_	3.00	W	6
-20 to 70°C Models	_	_	3.20	W	6
-20 to 75°C Models	_	_	3.30	W	6
-40 to 85°C Models		_	3.80	W	6
Power Consumption: Steady State @ 25°C			0.00	V V	0
0 to 70°C Models			1.10	W	6
-20 to 70°C Models	-	-	1.15	W	6
-20 to 75°C Models	-	-	1.13	W	6
-40 to 85°C Models	-	-	1.50	W	6
Phase Jitter: (BW: 10 Hz to Fo/2)	<u>-</u>	-	1.0		U
		 1.0E-11	1.0	ps rms	
Short Term Allan Deviation (1s)	-			rms	
Start-Up Time:	-	-	500	ms	7
Warm Up Time @ 25°C:	-	-	5	minutes	7

Phase Noise Characteristics

Typical Phase Noise for 10 MHz OXCO's with CMOS Output

Parameter	Minimum	Nominal	Maximum	Units	Notes
@1Hz offset	-	-	-85	dBc/Hz	
@ 10Hz offset	-	-	-115	dBc/Hz	
@ 100Hz offset	-	-	-140	dBc/Hz	
@ 1KHz offset	-	-	-145	dBc/Hz	
@ 10KHz offset	-	-	-150	dBc/Hz	
@ 100KHz offset	-	-	-150	dBc/Hz	

Bulletin	Cx210
Page	2 of 5
Revision	11
Date	03 Apr 2013

Aurora, Illinois 60505 Phone: 630-851-4722

Fax: 630-851-5040 www.conwin.com

OCVCXO Input Characteristics (OC	CXO Type Code V)
----------------------------------	------------------

Parameter	Minimum	Nominal	Maximum	Units	Notes
Control Voltage Range: (Vc)					
3.3 Vdc Models	0.30	1.65	3.00	V	8
5.0 Vdc Models	0.50	2.50	4.50	V	8
Frequency Pullability:	±0.4	-	-	ppm	
Input Impedance	100K	-	-	Ohms	

CMOS Output Characteristics (Output Code C)

Parameter	Minimum	Nominal	Maximum	Units	Notes
Load	-	15	-	рF	
Output Voltage:				·	
3.3 Vdc Models High (Voh)	3.0	-	-	V	
Low (Vol)	-	-	0.4		
5.0 Vdc Models High (Voh)	4.7	-	-	V	
Low (Vol)	-	-	0.4		
Duty Cycle at 50% of Vcc	45	50	55	%	
Rise / Fall Time: 10% to 90%	-	-	6	ns	
Spurious Output	-	-	-80	dBc	

Sinewave Output Characteristics (Output Code S)

Parameter	Minimum	Nominal	Maximum	Units	Notes
Load	-	50	-	Ohms	
Output Power	5.0	-	-	dBm:	
Harmonics	-	-	-30	dBc	
Spurious	-	-	-80	dBc	

Package Characteristics

OH300 Package

Package consisting of a FR4 substrate and Ryton-R4 cover. Water Resistant package, non-hermetic seal.

Recommended Cleaning Process

Wash only in a in-line high pressure wash station that has an air knife and drying capabilities. (Drying temperature range from 85° to 100°C)

Environmental Characteristics

Shock	500 G's 1ms, Halfsine, 3 shocks per direction, per MIL-STD 202G, Method 213B Test Condition D.
Sinusoidal Vibration	0.06" D.A. or 10G's Peak, 10 to 500 Hz, per MIL-STD-202G, Method 204D, Test Condition A.
Random Vibration	5.35 G's rms. 20 to 2000 Hz per MIL-STD-202G, Method 214, Test Condition 1A, 15 minutes each axis.
Moisture	10 cycles, 95% RH, Per MIL-STD-202G, Method 112.
Marking Permanency	Per MIL-STD-202G, Method 215J.
Solder Process	RoHS compliant, lead free. See solder profile.

Re-Stabilization Time

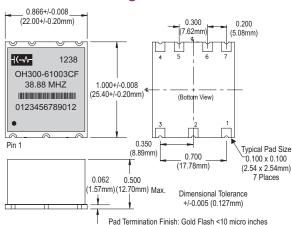
Off Time	Re stabilization Time
<1 Hour	<2 Hours *
<6 Hour	<12 Hours *
<24 Hour	<48 Hours *
1 to 16 Days	48 Hours + 1/4 Off Time *
>16 Days	<6 Days *

* For a given off time, the time required to meet daily aging, short term stability requirements.

Notes

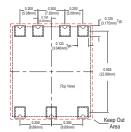
- 1. ±5.0 ppb stability models are only available from 0 to 70°C.
- 2. Referenced to the frequency measured @ 25°C. OCVCXO control voltage (Vc) = nominal voltage.
- 3. At time of shipment after 48 hours of operation.
- 4. Inclusive of calibration, operating temperature, supply voltage change, load change and 20 years aging.
- 5. Minimum "Power On Time" after rail rises from 0 to within +/-5% of Vcc = 1 second. Vcc ramp rate must be <0.3 volts per millisecond.
- 6. Measured with Vcc = Nominal, in calm air.
- 7. Measured @ 25°C, within ± 100 ppb, referenced one hour after turn-on.
- 8. To ensure proper operation of OCVCXO's the control voltage input must be biased the nominal control voltage. Failure to bias the Vc input will cause an unstable output condition.

Bulletin	Cx210
Page	3 of 5
Revision	11
Date	03 Apr 2013

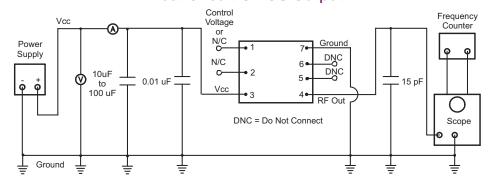

Aurora, Illinois 60505 Phone: 630-851-4722

Fax: 630-851-5040 www.conwin.com

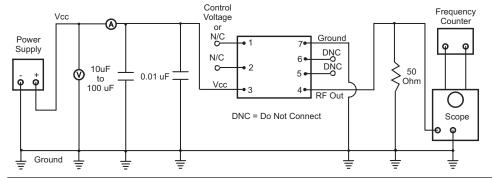
Attention: System Designers please review Application Note AN2093: System Design Information and Printed Circuit Board Layout Guidelines for OCXO Oscillators. @ www.conwin.com/technologies.html


Package Outline

Marking Information


Date Code (YYWW) Model Number 38.88 MHZ WILLIAM BURNER 0123456789012 Pin 1

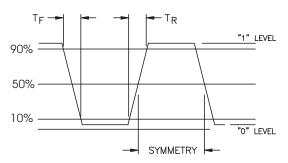
Suggested Pad Layout


 * Do not route any traces in the keep out area. It is recommended the next layer under the keep out area is to be ground plane.
 Pad Connections

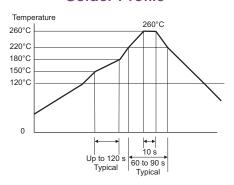
Test Circuit CMOS Output

- 1: Control Voltage or N/C
- 2: N/C
- 3: Supply Voltage (Vcc)
- 4: RF Output
- 5: Do Not Connect
- 6: Do Not Connect
- 7: Ground (Case)

Test Circuit Sinewave Output

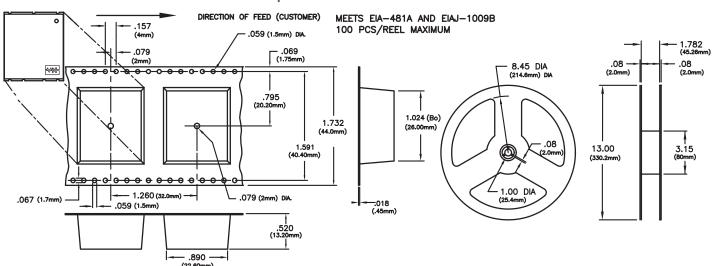

Bulletin	Cx210
Page	4 of 5
Revision	11
Date	03 Dec 2013

Aurora, Illinois 60505


Phone: 630-851-4722 Fax: 630-851-5040

www.conwin.com

CMOS Output Waveform



Solder Profile

Meets IPC/JEDEC J-STD-020C

Tape and Reel Information

Rev	P00,	ivew	issue.	01/26/1	١.
)	D 0 4	A 1 1			

	Rev P01, Added tape and reel information. 05/04/11.	
П	D D00 A LL LOUI000 DL L 05/00/14	Т

Rev P02, Added OH300 Photo. 05/06/11.

Rev P03, updated the Description. 05/25/11

Rev P04, Updated power consumption and changed package drawing. 07/27/11.

Rev P05, Added sinewave models to the data sheet 09/08/11

Rev P06, added cleaning process and package characteristics. 08/09/12.

Rev 07, added Barcode to package marking. 09/27/12

Rev 08, Added link to Application Note: AN2093. 11/06/12

Rev 09, Added additional notes. 11/14/12. Rev 10, Added additional notes. 12/07/12

Rev 11, Added ±5ppb models. 04/03/13

Bulletin	Cx210
Page	5 of 5
Revision	11
Date	03 Apr 2013