3.3V Surface Mount Crystal Clock Oscillator HSM6

XO

The Connor-Winfield HSM613, HSM623, and HSM633 are 7.5mm x 5mm, 3.3V HCMOS, Surface Mount, Fixed Frequency Crystal Oscillators (XO) designed for use in all applications requiring precision clocks. The RoHS compliant surface mount package is designed for high-density mounting and is optimum for mass production.

Features:

1.0 to 170 MHz
3.3V Operation
RoHS Compliant
Tri-State Enable/Disable
Power Saving Function: 10uA When Disabled
Overall Frequency Tolerance:
HSM613 ± 25 ppm
HSM623 ± 50 ppm
HSM633 ± 100 ppm
Temperature Range: -40 to 85°C
Ceramic Surface Mount Package
Tape and Reel Packaging

Absolute Maximum Ratings

Parameter	Minimum	Nominal	Maximum	Units	Notes
Storage Temperature	-55	-	125	°C	
Supply Voltage (Vcc)	-0.5	-	5.0	Vdc	
Operating Specifications					
Parameter	Minimum	Nominal	Maximum	Units	Notes
Frequency Range (Fo) HSM613 HSM623 HSM633	1.0	-	125 170 170	MHz	
Frequency Tolerance HSM613 HSM623 HSM633	-25 -50 -100	-	25 50 100	ppm	1
Operating Temp Range	-40	-	85	°C	
Supply Voltage (Vdd)	3.0	3.3	3.6	Vdc	
Supply Current (Icc) 1.000 to 31.999 MHz 32 to 49.999 MHz 50 to 66.999 MHz 67 to 124.999 MHz 125 to 170 MHz	-	-	15 20 25 40 50	mA	

Input Characteristics

Parameter	Minimum	Nominal	Maximum	Units	Notes
Enable Voltage - (Vih)	≥ 70% Vdd	-	-	Vdc	2
Disable Voltage - (Vil)	-	-	≤ 30% Vdd	Vdc	
Enable Time	-	-	10	mS	
Disable Time	-	-	150	nS	
Output Disable Current (Icc)	-	-	10	uA	-

HCMOS Output Characteristics

Minimum	Nominal	Maximum	Units	Notes
-	-	15	рF	
2.91	-	-	Vdc	
-	-	0.33		
-2	-	-	mA	
-	-	2		
45	50	55	%	
-	3.0	6.0	nS	
-	2.0	4.0		
-	1.5	3.0		
-	0.5	1.0		
-	-	10	mS	
-	-	5	pS RMS	
-	-	1		
	2.91 - -2 -		15 2.91 0.33 -2 2 45 50 55 - 3.0 6.0 - 2.0 4.0 - 1.5 3.0 - 0.5 1.0 - 10	15 pF 2.91 Vdc 0.33 -2 mA - 2 45 50 55 % - 3.0 6.0 nS - 2.0 4.0 - 1.5 3.0 - 0.5 1.0 - 10 mS

2111 Comprehensive Drive

Aurora, Illinois 60505

Phone: 630-851-4722

Fax: 630-851-5040

www.conwin.com

US Headquarters:

630-851-4722

+353-61-472221

Bulletin	Sm044
Revision	13
Date	27 March 2012

Notes:

- $1. \ \textit{Inclusive of calibration @ 25°C} \ , \textit{frequency stability vs temperature, supply voltage change, load change, shock and vibration, 10 years aging.} \\$
- 2. Oscillator output is enabled with no connection on pad 1

Aurora, Illinois 60505

Phone: 630-851-4722 Fax: 630-851-5040

www.conwin.com

Package Characteristics

Hermetically sealed ceramic package and metal cover Package

Environmental Characteristics

The specimen shall meet electrical characteristics after Temperature Cycle

tested 5 cycles of -55°C / 30 minutes and +125°C / 30 minutes

No bubbles appear in Flourinert (FC-43) at 125°C ±5°C for 5 minutes Hermetical Solvent Resistance Marking will withstand immersion in

Isopropyl Alcohol or Trichloroethylene

Soldering

260°C max x 10 sec max x 2 times max or General Conditions 230°C max x 180 sec max x 1 time

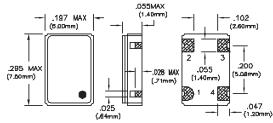
(Vapor phase reflow) 20 to 100 sec up to 215°C, 50 sec Typical Operation Data

at 215°C, then down to room temperature per 1 to 5°C / sec

Mechanical Characteristics

The specimen shall meet electrical characteristics after tested 3 times, Free Drop Free Drop testing on the hard wooden board from a height of 75 cm.

The specimen shall meet electrical characteristics after tested by the following conditions: 10-55Hz 1.5mm Amplitude, 55-2000 Hz 20 G's, 2 hours for each plane Vibration

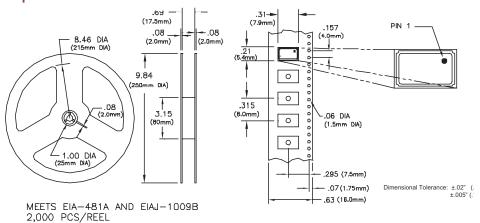

Thermal Shock

After applied Thermal Shock of 260°C max x 10 sec max x 2 times, or 230°C max x 180 sec max, the specimen shall meet electrical characteristics

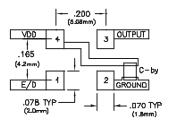
Solderability

(EIAJ-RCX-0102.101 Condition 1a)
(Flux: MIL-F-14256 (WW Rosin=25%, Isopropyl Alcohol = 75%)
) Solder: QQ-S-571 (Sn = 63%, Pb = 37%)
) Solder bath temperature: 235°C ±5°C
) Depth of immersion: Up to electrical terminal
) Immersing time: Within 2 sec ±0.5 sec into solder bath

After performing the above procedures, a newly soldered coverage shall be greater than 90%

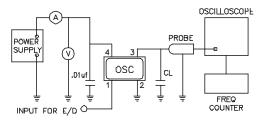


Dimensional Tolerance: ±.02" (.508mm) ±.005" (.127mm)

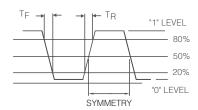

Pin Connections

- 1: Tri-State E/D
- 2: Ground
- 3: Output
- 4: VDD

Tape and Reel Dimensions



Suggested Pad Layout



Bypass capacitor, C-by, should be ceramic capacitor \geqslant .01uf.


Test Circuit

Output Waveform

Ordering Information

Bulletin	Sm044
Revision	13
Date	27 March 2012