

MB90598G/F598G/V595G

F²MC-16LX MB90595G Series CMOS 16-bit Proprietary Microcontroller

The MB90595G series with FULL-CAN interface and FLASH ROM is especially designed for automotive and industrial applications. Its main features are two on board CAN Interfaces, which conform to V2.0 Part A and Part B, while supporting a very flexible message buffer scheme and so offering more functions than a normal full CAN approach.

The instruction set of F²MC-16LX CPU core inherits an AT architecture of the F²MC* family with additional instruction sets for highlevel languages, extended addressing mode, enhanced multiplication/division instructions, and enhanced bit manipulation instructions. The microcontroller has a 32-bit accumulator for processing long word data.

The MB90595G series has peripheral resources of 8/10-bit A/D converters, UART (SCI), extended I/O serial interface, 8/16-bit PPG timer, I/O timer (input capture (ICU), output compare (OCU)) and stepping motor controller.

Features

Clock

Embedded PLL clock multiplication circuit

Operating clock (PLL clock) can be selected from divided-by-2 of oscillation or one to four times the oscillation (at oscillation of 4 MHz, 4 MHz to 16 MHz).

Minimum instruction execution time: 62.5 ns (operation at oscillation of 4 MHz, four times the oscillation clock, Vcc of 5.0 V)

- Instruction set to optimize controller applications Rich data types (bit, byte, word, long word) Rich addressing mode (23 types) Enhanced signed multiplication/division instruction and RETI instruction functions Enhanced precision calculation realized by the 32-bit accumulator
- Instruction set designed for high level language (C language) and multi-task operations Adoption of system stack pointer
 Enhanced pointer indirect instructions
 Barrel shift instructions
- Program patch function (for two address pointers)
- Enhanced execution speed: 4-byte instruction queue
- Enhanced interrupt function: 8 levels, 34 factors
- Automatic data transmission function independent of CPU operation
 Extended intelligent I/O service function (EI²OS): Up to 10

 channels
 Embedded ROM size and types Mask ROM: 128 Kbytes

Mask ROM: 128 Kbytes Flash ROM: 128 Kbytes Embedded RAM size: 4 Kbytes (MB90595G: 6 Kbytes)

Flash ROM

Supports automatic programming, Embedded Algorithm Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Hard-wired reset vector available in order to point to a fixed boot sector Erase can be performed on each block

Block protection with external programming voltage

Low-power consumption (stand-by) mode
 Sleep mode (mode in which CPU operating clock is stopped)
 Stop mode (mode in which oscillation is stopped)

CPU intermittent operation mode Hardware stand-by mode

- Process: 0.5 µm CMOS technology
- I/O port General-purpose I/O ports: 78 ports Push-pull output and Schmitt trigger input.
 Programmable on each bit as I/O or signal for peripherals.
- Timer
 Watchdog timer: 1 channel
 8/16-bit PPG timer: 8/16-bit × 6 channels
 16-bit re-load timer: 2 channels
- 16-bit I/O timer
 16-bit Free-run timer: 1 channel
 Input capture: 4 channels
 Output compare: 4 channels
- Extended I/O serial interface: 1 channel
- UART0

With full-duplex double buffer (8-bit length) Clock asynchronized or clock synchronized (with start/stop bit) transmission can be selectively used.

- UART1 (SCI)
 With full-duplex double buffer (8-bit length)
 Clock asynchronized or clock synchronized serial transmission
 (I/O extended transmission) can be selectively used.
- Stepping motor controller (4 channels)
- External interrupt circuit (8 channels) Amodule for starting an extended intelligent I/O service (EI²OS) and generating an external interrupt which is triggered by an external input.
- Delayed interrupt generation module: Generates an interrupt request for switching tasks.
- 8/10-bit A/D converter (8 channels)
 8/10-bit resolution can be selectively used.
 Starting by an external trigger input.
- FULL-CAN interface: 1 channel Conforming to Version 2.0 Part A and Part B Flexible message buffering (mailbox and FIFO buffering can be mixed)
- 18-bit Time-base counter
- External bus interface: Maximum address space 16 Mbytes

Cypress Semiconductor Corporation Document Number: 002-07700 Rev. *A 198 Champion Court

 San Jose, CA 95134-1709
 408-943-2600 Revised November 30, 2016

MB90595G Series

Contents

Product Lineup	3
Pin Assignment	5
Pin Description	6
I/O Circuit Type	8
Handling Devices	11
Block Diagram	
Memory Space	15
I/O Мар	16
Can Controller	
List of Control Registers	23
List of Message Buffers (ID Registers)	24
List of Message Buffers (DLC Registers and	
Data Registers)	27
Interrupt Source, Interrupt Vector, and Interrupt	
Control Register	29
-	

Electrical Characteristics	
Absolute Maximum Ratings	
Recommended Conditions	
DC Characteristics	
AC Characteristics	
A/D Converter	
A/D Converter Glossary	
Notes on Using A/D Converter	
Flash memory	
Example Characteristics	
Ordering Information	
Package Dimensions	
Major Changes	

1. Product Lineup

	Features	MB90598G MB90F598G		MB90V595G		
Classific	ation	Mask ROM product	Flash ROM product	Evaluation product		
ROM size		128 Kbytes	128 Kbytes Boot block Hard-wired reset vector	None		
RAM size	e	4 Kbytes	4 Kbytes	6 Kbytes		
Emulator	r-specific power supply	-		None		
CPU fun	ctions	The number of instructions: 351 Instruction bit length: 8 bits, 16 bits Instruction length: 1 byte to 7 bytes Data bit length: 1 bit, 8 bits, 16 bits Minimum execution time: 62.5 ns (at machine Interrupt processing time: 1.5 μs (at machine chi	e clock frequency of 16 MHz) lock frequency of 16 MHz, minim	ium value)		
UART0		Clock synchronized transmission (500 K/1 M/2 Mbps) Clock asynchronized transmission (4808/5208/9615/10417/19230/38460/62500 /500000 bps at machine clock frequency of 16 MHz) Transmission can be performed by bi-directional serial transmission or by master/slave connection.				
UART1(SCI)	Clock synchronized transmission (62.5 K/125 Clock asynchronized transmission (1202/240 Transmission can be performed by bi-directio	4/4808/9615/31250 bps)	ster/slave connection.		
8/10-bit /	8/10-bit A/D converter Conversion precision: 8/10-bit can be selectively used. Number of inputs: 8 One-shot conversion mode (converts selected channel once only) Scan conversion mode (converts two or more successive channels and can program up to 8 channels) Continuous conversion mode (converts selected channel continuously) Stop conversion mode (converts selected channel and stop operation repeatedly)					
	16-bit PPG timers Number of channels: 6 (8/16-bit × 6 channels) PPG operation of 8-bit or 16-bit A pulse wave of given intervals and given duty ratios can be output. Pulse interval: fsys, fsys/2 ¹ , fsys/2 ² , fsys/2 ³ , fsys/2 ⁴ (fsys = system clock frequency) 128µs (fosc = 4MHz: oscillation clock frequency)					
16-bit Re	eload timer	Number of channels: 2 Operation clock frequency: fsys/2 ¹ , fsys/2 ³ , fs Supports External Event Count function	ys/2 ⁵ (fsys = System clock frequ	ency)		
16-bit	16-bit Output compares	Number of channels: 4 Pin input factor: A match signal of compare register				
I/O tim- er Input captures Number of channels: 4 Rewriting a register value upon a pin input (rising, falling, or both edges)						

Features	MB90598G	MB90F598G	MB90V595G			
CAN Interface	Number of channels: 1 Conforms to CAN Specification Version 2.0 Part A and B Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID's Supports multiple messages Flexible configuration of acceptance filtering: Full bit compare / Full bit mask / Two partial bit masks Supports up to 1Mbps CAN bit timing setting: MB90598G/F598G:TSEG2 ≥ RSJW					
Stepping motor controller (4 channels)	Four high current outputs for each channel Synchronized two 8-bit PWM's for each channel					
External interrupt circuit	Number of inputs: 8 Started by a rising edge, a falling edge, an "H" le	vel input, or an "L" level input.				
Serial IO		Clock synchronized transmission (31.25 K/62.5 K/125 K/500 K/1 Mbps at system clock frequency of 16 MHz) LSB first/MSB first				
Watchdog timer	Reset generation interval: 3.58 ms, 14.33 ms, 57 (at oscillation of 4 MHz, minimum value)	7.23 ms, 458.75 ms				
Flash Memory	Supports automatic programming, Embedded Algorithm and Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Hard-wired reset vector available in order to point to a fixed boot sector in Flash Memory Boot block configuration Erase can be performed on each block Block protection with external programming voltage Flash Writer from Minato Electronics, Inc.					
Low-power consumption (stand-by) mode	Sleep/stop/CPU intermittent operation/watch timer/hardware stand-by					
Process	CMOS					
Power supply voltage for opera- tion*2	+5 V±10 %					
Package	QFP-100		PGA-256			

*1: It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.

Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.

*2: Varies with conditions such as the operating frequency. (See "Electrical Characteristics.")

2. Pin Assignment

3. Pin Description

Pin no.	Pin name	Circuit type	Function				
82	X0	٨					
83	X1	A	Oscillator pin				
77	RST	В	Reset input				
52	HST	С	Hardware standby input				
85 to 88	P00 to P03	G	General purpose IO				
00 10 00	IN0 to IN3	6	Inputs for the Input Captures				
89 to 92	P04 to P07	G	General purpose IO				
09 10 92	OUT0 to OUT3	9	Outputs for the Output Compares.				
93 to 98	P10 to P15	D	General purpose IO				
93 10 98	PPG0 to PPG5	d	Outputs for the Programmable Pulse Generators				
99	P16	D	General purpose IO				
33	TIN1	d	TIN input for the 16-bit Reload Timer 1				
100	P17	D	General purpose IO				
100	TOT1	d	TOT output for the 16-bit Reload Timer 1				
1 to 8	P20 to P27	G	General purpose IO				
9 to 10	P30 to P31	G	General purpose IO				
12 to 16	P32 to P36	G	General purpose IO				
17	P37	D	General purpose IO				
18	P40	G	General purpose IO				
10	SOT0	0	SOT output for UART 0				
19	P41	G	General purpose IO				
19	SCK0	0	SCK input/output for UART 0				
20	P42	G	General purpose IO				
20	SIN0	0	SIN input for UART 0				
21	P43	G	General purpose IO				
21	SIN1	0	SIN input for UART 1				
22	P44	G	General purpose IO				
22	SCK1	0	SCK input/output for UART 1				
24	P45	G	General purpose IO				
24	SOT1	6	SOT output for UART 1				
25	P46	G	General purpose IO				
20	SOT2	5	SOT output for the Serial IO				
26	P47	G	General purpose IO				
20	SCK2	5	SCK input/output for the Serial IO				

Pin no.	Pin name	Circuit type	Function	
20	P50	D	General purpose IO	
28	SIN2		SIN Input for the Serial IO	
00 to 00	P51 to P54	P.	General purpose IO	
29 to 32	INT4 to INT7	D	External interrupt input for INT4 to INT7	
	P55	P.	General purpose IO	
33	ADTG	D	Input for the external trigger of the A/D Converter	
20 to 11	P60 to P63		General purpose IO	
38 to 41	AN0 to AN3	E	Inputs for the A/D Converter	
40.1-40	P64 to P67	-	General purpose IO	
43 to 46	AN4 to AN7	E	Inputs for the A/D Converter	
47	P56	2	General purpose IO	
47	TIN0	D	TIN input for the 16-bit Reload Timer 0	
10	P57	_	General purpose IO	
48	TOT0	D	TOT output for the 16-bit Reload Timer 0	
	P70 to P73		General purpose IO	
54 to 57	PWM1P0 PWM1M0 PWM2P0 PWM2M0	F	Output for Stepper Motor Controller channel 0	
	P74 to P77		General purpose IO	
59 to 62	PWM1P1 PWM1M1 PWM2P1 PWM2M1	F	Output for Stepper Motor Controller channel 1	
	P80 to P83		General purpose IO	
64 to 67	PWM1P2 PWM1M2 PWM2P2 PWM2M2	F	Output for Stepper Motor Controller channel 2	
	P84 to P87		General purpose IO	
69 to 72	PWM1P3 PWM1M3 PWM2P3 PWM2M3	F	Output for Stepper Motor Controller channel 3	
74	P90	5	General purpose IO	
74	ТХ	D	TX output for CAN Interface	
75	P91	5	General purpose IO	
75	RX	D	RX input for CAN Interface	

Pin no.	Pin name	Circuit type	Function	
76	P92	D	General purpose IO	
70	INT0		External interrupt input for INT0	
78 to 80	P93 to P95	D	General purpose IO	
78 10 80	INT1 to INT3		External interrupt input for INT1 to INT3	
58, 68	DVcc	_	Dedicated power supply pins for the high current output buffers (Pin No. 54 to 72)	
53, 63, 73	DVss	_	Dedicated ground pins for the high current output buffers (Pin No. 54 to 72)	
34	AVcc	Power supply	Dedicated power supply pin for the A/D Converter	
37	AVss	Power supply	Dedicated ground pin for the A/D Converter	
35	AVRH	Power supply	Upper reference voltage input for the A/D Converter	
36	AVRL	Power supply	Lower reference voltage input for the A/D Converter	
49, 50	MD0 MD1	С	Operating mode selection input pins. These pins should be connected to V_{CC} or V_{SS}	
51	MD2	Н	Operating mode selection input pin. This pin should be connected to Vcc or Vss.	
27	С	_	External capacitor pin. A capacitor of $0.1 \mu F$ should be connected to this pin and Vss.	
23, 84	Vcc	Power supply	Power supply pins (5.0 V).	
11, 42, 81	Vss	Power supply	Ground pins (0.0 V).	

4. I/O Circuit Type

Circuit Type	Circuit	Remarks
D	Vcc P-ch N-ch R M-Ch HYS	 CMOS output CMOS Hysteresis input
E	Vcc P-ch N-ch R Analog input	 CMOS output CMOS Hysteresis input Analog input

Circuit Type	Circuit	Remarks
F	Vcc P-ch High current N-ch R M HYS	 CMOS high current output CMOS Hysteresis input
G	Vcc P-ch N-ch R R T T T T T	 CMOS output CMOS Hysteresis input TTL input (MB90F598G, only in Flash mode)
н	R HYS R	■ Hysteresis input Pull-down Resistor: 50 kΩ approx. (except MB90F598G)

5. Handling Devices

(1) Make Sure that the Voltage not Exceed the Maximum Rating (to Avoid a Latch-up).

In CMOS ICs, a latch-up phenomenon is caused when an voltage exceeding Vcc or an voltage below Vss is applied to input or output pins or a voltage exceeding the rating is applied across Vcc and Vss.

When a latch-up is caused, the power supply current may be dramatically increased causing resultant thermal break-down of devices. To avoid the latch-up, make sure that the voltage not exceed the maximum rating.

In turning on/turning off the analog power supply, make sure the analog power voltage (AVcc, AVRH, DVcc) and analog input voltages not exceed the digital voltage (Vcc).

(2) Treatment of Unused Pins

Unused input pins left open may cause abnormal operation, or latch-up leading to permanent damage. Unused input pins should be pulled up or pulled down through at least 2 k Ω resistance.

Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.

(3) Using external clock

In using the external clock, drive X0 pin only and leave X1 pin unconnected.

(4) Power supply pins (Vcc/Vss)

In products with multiple V_{cc} or V_{ss} pins, pins with the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to an external power and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating (See the figure below.)

Make sure to connect V_{cc} and V_{ss} pins via lowest impedance to power lines.

It is recommended to provide a bypass capacitor of around 0.1 μ F between V_{cc} and V_{ss} pins near the device.

(5) Pull-up/down resistors

The MB90595G Series does not support internal pull-up/down resistors. Use external components where needed.

(6) Crystal Oscillator Circuit

Noises around X0 or X1 pins may cause abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure that lines of oscillation circuit not cross the lines of other circuits.

A printed circuit board artwork surrounding the X0 and X1 pins with ground area for stabilizing the operation is highly recommended.

(7) Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH, AVRL) and analog inputs (AN0 to AN7) after turning-on the digital power supply (Vcc).

Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

(8) Connection of Unused Pins of A/D Converter

Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVRH = DVcc = Vss.

(9) N.C. Pin

The N.C. (internally connected) pin must be opened for use.

(10) Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at

50 µs or more (0.2 V to 2.7 V).

(11) Indeterminate outputs from ports 0 and 1 (MB90V595G only)

During oscillation setting time of step-down circuit (during a power-on reset) after the power is turned on, the outputs from ports 0 and 1 become following state.

■ If RST pin is "H", the outputs become indeterminate.

• If \overline{RST} pin is "L", the outputs become high-impedance.

(12) Initialization

The device contains internal registers which are initialized only by a power-on reset. To initialize these registers, please turn on the power again.

(13) Directions of "DIV A, Ri" and "DIVW A, RWi" instructions

In the signed multiplication and division instructions ("DIV A, Ri" and "DIVW A, RWi"), the value of the corresponding bank register (DTB, ADB, USB, SSB) is set in "00H".

If the values of the corresponding bank register (DTB,ADB,USB,SSB) are set to other than "00H", the remainder by the execution result of the instruction is not stored in the register of the instruction operand.

(14) Using REALOS

The use of EI²OS is not possible with the REALOS real time operating system.

(15) Caution on Operations during PLL Clock Mode

If the PLL clock mode is selected in the microcontroller, it may attempt to continue the operation using the free-running frequency of the automatic oscillating circuit in the PLL circuitry even if the oscillator is out of place or the clock input is stopped. Performance of this operation, however, cannot be guaranteed.

6. Block Diagram

7. Memory Space

The memory space of the MB90595G Series is shown below

Figure 1. Memory space map

Note: The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16-bit of bank FF and the lower 16-bit of bank 00 are assigned to the same address, enabling reference of the table on the ROM without stating "far".

For example, if an attempt has been made to access 00C000H, the contents of the ROM at FFC000H are accessed. Since the ROM area of the FF bank exceeds 48 Kbytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000H to FFFFFH looks, therefore, as if it were the image for 004000H to 00FFFFH. Thus, it is recommended that the ROM data table be stored in the area of FF4000H to FFFFFH.

8. I/O Map

Address	Register	Abbreviation	Access	Peripheral	Initial value
00н	Port 0 Data Register	PDR0	R/W	Port 0	XXXXXXXXB
01н	Port 1 Data Register	PDR1	R/W	Port 1	XXXXXXXXB
02н	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXXB
03н	Port 3 Data Register	PDR3	R/W	Port 3	XXXXXXXXB
04н	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXXB
05н	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXXB
06н	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXXB
07н	Port 7 Data Register	PDR7	R/W	Port 7	XXXXXXXXB
08н	Port 8 Data Register	PDR8	R/W	Port 8	XXXXXXXXB
09н	Port 9 Data Register	PDR9	R/W	Port 9	XXXXXXB
0Ан to 0Fн		Reserv	ed		
10н	Port 0 Direction Register	DDR0	R/W	Port 0	00000000
11н	Port 1 Direction Register	DDR1	R/W	Port 1	00000000
12н	Port 2 Direction Register	DDR2	R/W	Port 2	00000000
13н	Port 3 Direction Register	DDR3	R/W	Port 3	00000000
14н	Port 4 Direction Register	DDR4	R/W	Port 4	00000000
15н	Port 5 Direction Register	DDR5	R/W	Port 5	00000000
16 н	Port 6 Direction Register	DDR6	R/W	Port 6	00000000
17н	Port 7 Direction Register	DDR7	R/W	Port 7	00000000
18 н	Port 8 Direction Register	DDR8	R/W	Port 8	00000000
19 н	Port 9 Direction Register	DDR9	R/W	Port 9	000000в
1Ан		Reserv	ed		·
1Bн	Analog Input Enable Register	ADER	R/W	Port 6, A/D	11111118
1Cн to 1Fн		Reserv	ed		·
20н	Serial Mode Control Register 0	UMC0	R/W		0000100в
21н	Serial status Register 0	USR0	R/W		0001000в
22н	Serial Input/Output Data Register 0	UIDR0/UODR0	R/W	UART0	XXXXXXXXB
23н	Rate and Data Register 0	URD0	R/W		0000000 Хв
24н	Serial Mode Register 1	SMR1	R/W		00000000
25н	Serial Control Register 1	SCR1	R/W		00000100в
26н	Serial Input/Output Data Register 1	SIDR1/SODR1	R/W	UART1	XXXXXXXXB
27н	Serial Status Register 1	SSR1	R/W		00001_00в
28н	UART1 Prescaler Control Register	U1CDCR	R/W]	01111в

Address	Register	Abbreviation	Access	Peripheral	Initial value
29н to 2Ан	•	Reserved	• 		
2Вн	Serial IO Prescaler	SCDCR	R/W		01111
2Сн	Serial Mode Control Register (low-order)	SMCS	R/W		0000
2Dн	Serial Mode Control Register (high-order)	SMCS	R/W	Serial IO	00000010
2Ен	Serial Data Register	SDR	R/W		XXXXXXXXAB
2 F н	Edge Selector	SES	R/W		0
30н	External Interrupt Enable Register	ENIR	R/W		00000000
31н	External Interrupt Request Register	EIRR	R/W		XXXXXXXXB
32н	External Interrupt Level Register	ELVR	R/W	External Interrupt	00000000
33н	External Interrupt Level Register	ELVR	R/W		00000000
34н	A/D Control Status Register 0	ADCS0	R/W		00000000
35н	A/D Control Status Register 1	ADCS1	R/W		00000000
36н	A/D Data Register 0	ADCR0	R	A/D Converter	XXXXXXXXB
37н	A/D Data Register 1	ADCR1	R/W		0 0 0 0 1 _ XX
38н	PPG0 Operation Mode Control Register	PPGC0	R/W	16-bit Programmable Pulse Generator 0/1	0_000_1
39н	PPG1 Operation Mode Control Register	PPGC1	R/W		0_00001
ЗАн	PPG0, 1 Output Pin Control Register	PPG01	R/W		000000
3Вн		Reserved			
3Сн	PPG2 Operation Mode Control Register	PPGC2	R/W	16-bit Programmable	0_000_1
3Dн	PPG3 Operation Mode Control Register	PPGC3	R/W	Pulse	0_00001
ЗЕн	PPG2, 3 Output Pin Control Register	PPG23	R/W	Generator 2/3	000000
3Fн		Reserved			
40н	PPG4 Operation Mode Control Register	PPGC4	R/W	16-bit Programmable	0_000_1
41н	PPG5 Operation Mode Control Register	PPGC5	R/W	Pulse	0_00001
42н	PPG4, 5 Output Pin Control Register	PPG45	R/W	Generator 4/5	000000
43н		Reserved		1	
44 _H	PPG6 Operation Mode Control Register	PPGC6	R/W	16-bit Programmable	0_000_1
45 H	PPG7 Operation Mode Control Register	PPGC7	R/W	Pulse	0_00001
46 H	PPG6, 7 Output Pin Control Register	PPG67	R/W	Generator 6/7	000000
47 H		Reserved	<u> </u>	1	
48 H	PPG8 Operation Mode Control Register	PPGC8	R/W	16-bit Programmable	0_000_1
49 H	PPG9 Operation Mode Control Register	PPGC9	R/W	Pulse	0_00001
4Aн	PPG8, 9 Output Pin Control Register	PPG89	R/W	Generator 8/9	000000
4Bн		Reserved	<u>ı </u>	1	

Address	Register	Abbreviation	Access	Peripheral	Initial value
4Сн	PPGA Operation Mode Control Register	PPGCA	R/W	16-bit	0_000_1
4DH	PPGB Operation Mode Control Register	PPGCB	R/W	Programmable Pulse	0_00001в
4 Е н	PPGA, B Output Pin Control Register	PPGAB	R/W	Generator A/B	0 0 0 0 0 0 0 ^B
4F н		Reserved	I		
50н	Timer Control Status Register 0	TMCSR0	R/W		$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
51н	Timer Control Status Register 0	TMCSR0	R/W	16-bit	0000 _B
52н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W	Reload Timer 0	XXXXXXXXB
53н	Timer 0/Reload Register 0	TMR0/TMRLR0	R/W		XXXXXXXXB
54 H	Timer Control Status Register 1	TMCSR1	R/W		$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
55н	Timer Control Status Register 1	TMCSR1	R/W	16-bit	0 0 0 0 _B
56 H	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W	Reload Timer 1	XXXXXXXXAB
57 н	Timer Register 1/Reload Register 1	TMR1/TMRLR1	R/W		XXXXXXXXB
58 н	Output Compare Control Status Register 0	OCS0	R/W	Output Compare 0/1	$0\ 0\ 0\ 0\ 0\ _\ 0\ 0_{\rm B}$
59н	Output Compare Control Status Register 1	OCS1	R/W		00000 _B
5Ан	Output Compare Control Status Register 2	OCS2	R/W	Output Compare 2/3	0 0 0 0 0 0 _B
5В н	Output Compare Control Status Register 3	OCS3	R/W		0 0 0 0 0 _B
5Сн	Input Capture Control Status Register 0/1	ICS01	R/W	Input Capture 0/1	0 0 0 0 0 0 0 0 0 _B
5Dн	Input Capture Control Status Register 2/3	ICS23	R/W	Input Capture 2/3	0 0 0 0 0 0 0 0 0 _B
5Eн	PWM Control Register 0	PWC0	R/W	Stepping Motor Controller 0	00000_0В
5Fн		Reserved			
60н	PWM Control Register 1	PWC1	R/W	Stepping Motor Controller 1	000000
61н		Reserved			
62н	PWM Control Register 2	PWC2	R/W	Stepping Motor Controller 2	000000
63н		Reserved			
64н	PWM Control Register 3	PWC3	R/W	Stepping Motor Controller 3	000000
65н		Reserved			-
66н	Timer Data Register (low-order)	TCDT	R/W		00000000 _B
67н	Timer Data Register (high-order)	TCDT	R/W	16-bit Free-run Timer	00000000 _B
68н	Timer Control Status Register	TCCS	R/W		$0\; 0\; 0\; 0\; 0\; 0\; 0\; 0_{\rm B}$
69н to 6Ен		Reserved			

Address	Register	Abbreviation	Access	Peripheral	Initial value
6Fн	ROM Mirror Function Selection Register	ROMM	R/W	ROM Mirror	1в
70 н	PWM1 Compare Register 0	PWC10	R/W		XXXXXXXXXB
71н	PWM2 Compare Register 0	PWC20	R/W	Stepping Motor	XXXXXXXXXB
72н	PWM1 Select Register 0	PWS10	R/W	Controller 0	000000
73н	PWM2 Select Register 0	PWS20	R/W		_ 0 0 0 0 0 0 0 0 _B
74 H	PWM1 Compare Register 1	PWC11	R/W		XXXXXXXX _B
75н	PWM2 Compare Register 1	PWC21	R/W	Stepping Motor	XXXXXXXXAB
76н	PWM1 Select Register 1	PWS11	R/W	Controller 1	000000
77н	PWM2 Select Register 1	PWS21	R/W		_ 0 0 0 0 0 0 0 0 _B
78 н	PWM1 Compare Register 2	PWC12	R/W		XXXXXXXX _B
79н	PWM2 Compare Register 2	PWC22	R/W	Stepping Motor	XXXXXXXXAB
7Ан	PWM1 Select Register 2	PWS12	R/W	Controller 2	000000B
7 Вн	PWM2 Select Register 2	PWS22	R/W		_ 0 0 0 0 0 0 0 0 _B
7Сн	PWM1 Compare Register 3	PWC13	R/W		XXXXXXXX _B
7Dн	PWM2 Compare Register 3	PWC23	R/W	Stepping Motor	XXXXXXXXB
7Ен	PWM1 Select Register 3	PWS13	R/W	Controller 3	000000
7 F н	PWM2 Select Register 3	PWS23	R/W		_ 0 0 0 0 0 0 0 0 _B
80н to 8Fн	CAN Controll	er. Refer to section	about CAN	Controller	
90н to 9Dн		Reserved			
9Eн	Program Address Detection Control Status Register	PACSR	R/W	Address Match Detection Function	0 0 0 0 0 0 0 0 0 _B
9Fн	Delayed Interrupt/Request Register	DIRR	R/W	Delayed Interrupt	0
АОн	Low-Power Mode Control Register	LPMCR	R/W	Low Power Controller	0 0 0 1 1 0 0 0 _B
А1н	Clock Selection Register	CKSCR	R/W	Low Power Controller	1 1 1 1 1 1 0 OB
A2H to A7H		Reserved			
А8н	Watchdog Timer Control Register	WDTC	R/W	Watchdog Timer	XXXXX 1 1 1 _B
А9н	Time Base Timer Control Register	TBTC	R/W	Time Base Timer	100100в
AAн to ADн		Reserved			
АЕн	Flash Memory Control Status Register (MB90F598G only. Otherwise reserved)	FMCS	R/W	Flash Memory	0 0 0 X 0 0 0 F
AFн		Reserved			

Address	Register	Abbreviation	Access	Peripheral	Initial value
В0н	Interrupt Control Register 00	ICR00	R/W		00000111в
В1н	Interrupt Control Register 01	ICR01	R/W		00000111в
В2н	Interrupt Control Register 02	ICR02	R/W	Interrupt controller	00000111в
ВЗн	Interrupt Control Register 03	ICR03	R/W		00000111в
В4н	Interrupt Control Register 04	ICR04	R/W		00000111в
В5н	Interrupt Control Register 05	ICR05	R/W		00000111в
В6н	Interrupt Control Register 06	ICR06	R/W		00000111в
В7н	Interrupt Control Register 07	ICR07	R/W		00000111в
В 8н	Interrupt Control Register 08	ICR08	R/W	-	00000111в
В9н	Interrupt Control Register 09	ICR09	R/W		00000111в
ВАн	Interrupt Control Register 10	ICR10	R/W	Interrupt controller	00000111в
ВВн	Interrupt Control Register 11	ICR11	R/W		00000111в
ВСн	Interrupt Control Register 12	ICR12	R/W		00000111в
BDн	Interrupt Control Register 13	ICR13	R/W		00000111в
ВЕн	Interrupt Control Register 14	ICR14	R/W		00000111в
BFн	Interrupt Control Register 15	ICR15	R/W		00000111в
COн to FFн		Rese	rved		
1900н	Reload Register L	PRLL0	R/W		XXXXXXXXAB
1901 н	Reload Register H	PRLH0	R/W	16-bit Programmable	XXXXXXXXAB
1902н	Reload Register L	PRLL1	R/W	Pulse Generator 0/1	XXXXXXXXAB
1903н	Reload Register H	PRLH1	R/W		XXXXXXXXAB
1904н	Reload Register L	PRLL2	R/W		XXXXXXXXAB
1905 н	Reload Register H	PRLH2	R/W	16-bit Programmable	XXXXXXXXAB
1906н	Reload Register L	PRLL3	R/W	Pulse Generator 2/3	XXXXXXXXAB
1907 н	Reload Register H	PRLH3	R/W		XXXXXXXXAB
1908 н	Reload Register L	PRLL4	R/W		XXXXXXXXAB
1909н	Reload Register H	PRLH4	R/W	16-bit Programmable	XXXXXXXXAB
190А н	Reload Register L	PRLL5	R/W	Pulse Generator 4/5	XXXXXXXXAB
190Bн	Reload Register H	PRLH5	R/W		XXXXXXXXAB
190Cн	Reload Register L	PRLL6	R/W		XXXXXXXXAB
190Dн	Reload Register H	PRLH6	R/W	16-bit Programmable	XXXXXXXXAB
190Eн	Reload Register L	PRLL7	R/W	Pulse Generator 6/7	XXXXXXXXAB
190F⊦	Reload Register H	PRLH7	R/W		XXXXXXXXAB

Address	Register	Abbreviation	Access	Peripheral	Initial value
1910 н	Reload Register L	PRLL8	R/W		XXXXXXXX _B
1911 н	Reload Register H	PRLH8	R/W	16-bit Programmable Pulse	XXXXXXXX _B
1912 н	Reload Register L	PRLL9	R/W	Generator 8/9	XXXXXXXX _B
1913н	Reload Register H	PRLH9	R/W		XXXXXXXX _B
1914 н	Reload Register L	PRLLA	R/W	16-bit Programmable Pulse	XXXXXXXX _B
1915 _H	Reload Register H	PRLHA	R/W	Generator A/B	XXXXXXXX _B
1916 _H	Reload Register L	PRLLB	R/W	16-bit Programmable Pulse	XXXXXXXXAB
1917 н	Reload Register H	PRLHB	R/W	Generator A/B	XXXXXXXX
1918н to 191Fн		Re	served		
1920 н	Input Capture Register 0 (low-order)	IPCP0	R		XXXXXXXX _B
1921н	Input Capture Register 0 (high-order)	IPCP0	R		XXXXXXXXAB
1922н	Input Capture Register 1 (low-order)	IPCP1	R	Input Capture 0/1	XXXXXXXX _B
1923н	Input Capture Register 1 (high-order)	IPCP1	R		XXXXXXXXAB
1924н	Input Capture Register 2 (low-order)	IPCP2	R		XXXXXXXX
1925 _H	Input Capture Register 2 (high-order)	IPCP2	R		XXXXXXXXAB
1926 н	Input Capture Register 3 (low-order)	IPCP3	R	Input Capture 2/3	XXXXXXXX
1927 н	Input Capture Register 3 (high-order)	IPCP3	R		XXXXXXXX
1928 _H	Output Compare Register 0 (low-order)	OCCP0	R/W		XXXXXXXX
1929 _H	Output Compare Register 0 (high-order)	OCCP0	R/W		XXXXXXXX
192Ан	Output Compare Register 1 (low-order)	OCCP1	R/W	Output Compare 0/1	XXXXXXXX
192Bн	Output Compare Register 1 (high-order)	OCCP1	R/W		XXXXXXXX

Address	Register	Abbreviation	Access	Peripheral	Initial value
192Cн	Output Compare Register 2 (low-order)	OCCP2	R/W		XXXXXXXXAB
192Dн	Output Compare Register 2 (high-order)	OCCP2	R/W	Output Compare 2/2	XXXXXXXXAB
192Eн	Output Compare Register 3 (low-order)	OCCP3	R/W	Output Compare 2/3	XXXXXXXXAB
192Fн	Output Compare Register 3 (high-order)	OCCP3	R/W		XXXXXXXXAB
1930н to 19FFн		Re	served		
1A00н to 1AFFн	CAN	Controller. Refer to	section abou	ut CAN Controller	
1B00н to 1BFFн	CAN	Controller. Refer to	section abou	ut CAN Controller	
1C00H to $1EFFH$		Re	served		
1FF0н	Program Address Detection Register 0 (low-order)				XXXXXXXXXB
1FF1н	Program Address Detection Register 0 (middle-order)	PADR0	R/W		XXXXXXXX
1FF2н	Program Address Detection Register 0 (high-order)			Address Match	XXXXXXXXXB
1FF3н	Program Address Detection Register 1 (low-order)			Detection Function	XXXXXXXXXB
1FF4н	Program Address Detection Register 1 (middle-order)	PADR1	R/W		XXXXXXXX
1FF5H	Program Address Detection Register 1 (high-order)				XXXXXXXXXB
1FF6н to 1FFFн		Re	served		

Description for Read/Write

R/W : Readable/writable

R : Read only

W: Write only

Description of initial value

0 : the initial value of this bit is "0".

1 : the initial value of this bit is "1".

X : the initial value of this bit is undefined.

_ : this bit is unused. the initial value is undefined.

Note: : Addresses in the range of 0000_H to 00FF_H, which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results in reading "X", and any write access should not be performed.

9. Can Controller

The CAN controller has the following features:

- Conforms to CAN Specification Version 2.0 Part A and B
 Supports transmission/reception in standard frame and extended frame formats
- Supports transmission of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
- □ 29-bit ID and 8-byte data
- Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
- Two acceptance mask registers in either standard frame format or extended frame format
- Bit rate programmable from 10 kbps to 2 Mbps (when input clock is at 16 MHz)

Address	Register	Abbreviation	Access	Initial Value	
000080н	Message buffer valid register	BVALR	R/W	0000000 0000000в	
000081 н	wessage burrer valid register	DVAER	1.7, 4.4	000000000000000000000000000000000000000	
000082н	Transmit request register	TREQR	R/W	0000000 0000000в	
000083н		INEQI	10,00		
000084н	Transmit cancel register	TCANR	W	0000000 0000000в	
000085н		TCANK	vv	000000000000000000000000000000000000000	
000086н	Transmit complete register	TCR	R/W	0000000 0000000в	
000087н		TOR	D/ W	0000000 000000B	
000088н	Receive complete register	RCR	R/W	00000000 0000000B	
000089н		Keik	10,00	0000000 0000000B	
00008Aн	Remote request receiving register	RRTRR	R/W	00000000 0000000B	
00008BH	Remote request receiving register	NNINN	FN/ VV	0000000 000000B	
00008Cн	Receive overrun register	ROVRR	R/W	00000000 0000000 _В	
00008Dн		ROVER	FN/ VV	0000000 000000B	
00008EH	Receive interrupt enable register	RIER	R/W	00000000 0000000B	
00008Fн		NIER	FN/ VV	0000000 000000B	
001В00н	Control status register	CSR	R/W, R	00 000 0 0 1-	
001B01 н		USK	r/w, r	00000 00-1в	
001B02H	Lest event indicator register	LEIR	R/W	000.0000	
001B03н	Last event indicator register	LEIK	rt/ VV	000-000в	
001B04 _H	Receive/transmit error counter	RTEC	R	0000000 0000000	
001B05н		RIEC	ĸ	0000000 0000000в	
001В06н	Bit timing register	BTR	R/W	-1111111 1111111	
001B07 н	Bit timing register	ык	K/VV	-11111111111111111111111	

9.1 List of Control Registers

Address	Register	Abbreviation	Access	Initial Value	
001B08H	– IDE register	IDER	R/W	XXXXXXXX XXXXXXXX	
001B09н		IDER			
001B0Aн	Transmit RTR register	TRTRR	R/W	0000000 0000000B	
001B0Bн				0000000 000000B	
001B0Cн	Remote frame receive waiting register	RFWTR	R/W	XXXXXXXX XXXXXXX	
001B0Dн		KEVVIK	r./ vv		
001B0Eн	Transmit interrupt anable register	TIER	R/W	0000000 0000000B	
001B0Fн	 Transmit interrupt enable register 	HER	r./ vv	0000000 000000B	
001B10н			R/W	XXXXXXXX XXXXXXX	
001B11н		AMSR			
001B12н	 Acceptance mask select register 	AIVISK		XXXXXXXX XXXXXXX	
001B13н					
001B14н			544	XXXXXXXX XXXXXXX	
001B15н					
001B16н	Acceptance mask register 0	AMR0	R/W		
001B17 н	7			XXXXX XXXXXXXXB	
001B18н					
001B19н			DAA	XXXXXXXX XXXXXXXX	
001B1Aн	Acceptance mask register 1	AMR1	R/W		
001B1Bн	1			XXXXX XXXXXXXXB	

9.2 List of Message Buffers (ID Registers)

Address	Register	Abbreviation	Access	Initial Value	
001А00н to 001А1Fн	General-purpose RAM		R/W	XXXXXXXXB to XXXXXXXB	
001A20н				XXXXXXXX XXXXXXXX	
001A21н	ID register 0	IDR0	R/W		
001А22н		IDRU	K/ VV	XXXXX XXXXXXXXB	
001А23н					
001A24н			R/W	XXXXXXXX XXXXXXXX	
001A25н	ID register 1	IDR1			
001A26н				XXXXX XXXXXXXXB	
001A27н				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
001A28н				XXXXXXXX XXXXXXXX	
001A29н	ID register 2	IDR2	R/W		
001А2Ан		IDINZ	15/70	XXXXX XXXXXXXXB	
001A2Bн	Зн			~~~~~ ~~~~~	

Address	Register	Abbreviation	Access	Initial Value
001А2Сн				XXXXXXXX XXXXXXX
001A2Dн	ID register 3	IDR3	R/W	
001A2Eн		ibito	10,00	XXXXX XXXXXXXXB
001A2Fн				
001А30н				XXXXXXXX XXXXXXXXB
001A31н	ID register 4	IDR4	R/W	
001А32н			10,00	XXXXX XXXXXXXXB
001А33н]			
001A34н				XXXXXXXX XXXXXXXXB
001А35н	ID register 5	IDR5	R/W	
001А36н		IDK3		XXXXX XXXXXXXXB
001А37н				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
001A38н				XXXXXXXX XXXXXXX
001А39н	ID register 6	IDR6	R/W	
001АЗАн		IDRO		XXXXX XXXXXXXXB
001А3Вн]			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
001А3Сн				XXXXXXXX XXXXXXXX
001А3Dн] ID register 7	IDR7	R/W	~~~~~~ ~~~~~
001АЗЕн	ID register 7		K/VV —	XXXXX XXXXXXXXB
001А3Fн]			Conti

Address	Register	Abbreviation	Access	Initial Value
001A40н				
001A41 н	ID register 8	IDR8	R/W	XXXXXXXX XXXXXXXB
001A42н		IDRo	r./ vv	XXXXX XXXXXXXXB
001A43н				~~~~~~~~~~~~
001A44н				XXXXXXXX XXXXXXXXB
001A45н	ID register 9	IDR9	R/W	
001A46н		ibite		XXXXX XXXXXXXXB
001A47н				
001A48н				XXXXXXXX XXXXXXXXB
001A49н	ID register 10	IDR10	R/W	
001А4Ан				XXXXX XXXXXXXXB
001A4Bн				
001A4Cн	- ID register 11		R/W	XXXXXXXX XXXXXXXX
001A4Dн		IDR11		
001A4Eн				XXXXX XXXXXXXX
001A4Fн				
001А50н			R/W	XXXXXXXX XXXXXXXX
001A51H	ID register 12	IDR12		
001А52н				XXXXX XXXXXXXX _B
001А53н				
001А54н 001А55н				XXXXXXXX XXXXXXXX
001А55н 001А56н	ID register 13	IDR13	R/W	
001А50н 001А57н				XXXXX XXXXXXXXB
001A58H				
001A59H				$XXXXXXXX XXXXXXX_{B}$
001А5Ан	ID register 14	IDR14	R/W	
001А5Вн	-			XXXXX XXXXXXXX _B
001А5Cн				
001А5Dн				XXXXXXXX XXXXXXXAB
001А5Ен	ID register 15	IDR15	R/W	
001А5Fн				XXXXX XXXXXXXXB

9.3 List of Message Buffers (DLC Registers and Data Registers)

Address	Register Abbreviation		Access	Initial Value	
001A60н		DI ODO			
001А61 н	DLC register 0	DLCR0	R/W	ХХХХв	
001A62н			DAM		
001А63н	DLC register 1	DLCR1	R/W	XXXXB	
001A64н	DLC register 2	DLCR2	R/W	ХХХХв	
001А65 н		DEGRZ	17/17	XXXXB	
001A66н	DLC register 3	DLCR3	R/W	XXXX _B	
001А67 н		DEGRO	10,00		
001A68н	DLC register 4	DLCR4	R/W	ХХХХв	
001A69н		DECR4	17/17	XXXXB	
001A6Aн	DLC register 5	DLCR5	R/W	ХХХХв	
001A6Bн		DEGRO	10.00		
001A6Cн	DLC register 6	DLCR6	R/W	ХХХХв	
001A6Dн		DECKO	17/17	XXXXB	
001A6Eн	DLC register 7	DLCR7	R/W	ХХХХв	
001A6Fн		DECKI	17/17		
001A70н	DLC register 8 DLCR8 R/W		R/W	XXXX	
001A71 н		DEGRO	10,00		
001A72н	DLC register 9	DLCR9	R/W	ХХХХв	
001A73н		DEGRO	1000		
001A74н	DLC register 10	DLCR10	R/W	ХХХХв	
001A75н		DEGITIO	1000		
001A76н	DLC register 11	DLCR11	R/W	ХХХХв	
001А77 н		DEORT	1000		
001A78н	DLC register 12	DLCR12	R/W	ХХХХв	
001A79н		DEGITIZ	1000		
001А7Ан	DLC register 13	DLCR13	R/W	ХХХХв	
001A7Bн		DEGITIO	1.7 V V		
001A7Cн	DLC register 14	DLCR14	R/W	ХХХХв	
001A7Dн			1.7 V V		
001A7Eн	DLC register 15	DLCR15	R/W	ХХХХв	
001A7Fн			1.7 V V		
001A80н		DTDO		XXXXXXXAB	
to 001А87н	Data register 0 (8 bytes)	DTR0	R/W	to XXXXXXX _B	

Address	Register	Abbreviation	Access	Initial Value
001А88н to 001А8Fн	Data register 1 (8 bytes)	DTR1	R/W	XXXXXXXXB to XXXXXXXB
001А90н to 001А97н	Data register 2 (8 bytes)	DTR2	R/W	XXXXXXXXB to XXXXXXXB
001А98н to 001А9Fн	Data register 3 (8 bytes)	DTR3	R/W	XXXXXXXXB to XXXXXXXB
001AA0н to 001AA7н	Data register 4 (8 bytes)	DTR4	R/W	XXXXXXXXB to XXXXXXXB
001AA8н to 001AAFн	Data register 5 (8 bytes)	DTR5	R/W	XXXXXXXXB to XXXXXXXB
001AB0н to 001AB7н	Data register 6 (8 bytes)	DTR6	R/W	XXXXXXXXB to XXXXXXXB
001AB8н to 001ABFн	Data register 7 (8 bytes)	DTR7	R/W	XXXXXXXXB to XXXXXXXB
001AC0н to 001AC7н	Data register 8 (8 bytes)	DTR8	R/W	XXXXXXXXB to XXXXXXXB
001AC8н to 001ACFн	Data register 9 (8 bytes)	DTR9	R/W	XXXXXXXXB to XXXXXXXB
001AD0н to 001AD7н	Data register 10 (8 bytes)	DTR10	R/W	XXXXXXXXB to XXXXXXXB
001AD8н to 001ADFн	Data register 11 (8 bytes)	DTR11	R/W	XXXXXXXXB to XXXXXXXB
001АЕ0н to 001АЕ7н	Data register 12 (8 bytes)	DTR12	R/W	XXXXXXXXB to XXXXXXXB
001АЕ8н to 001АЕFн	Data register 13 (8 bytes)	DTR13	R/W	XXXXXXXXB to XXXXXXXXB
001AF0н to 001AF7н	Data register 14 (8 bytes)	DTR14	R/W	XXXXXXXXB to XXXXXXXXB
001AF8н to 001AFFн	Data register 15 (8 bytes)	DTR15	R/W	XXXXXXXXB to XXXXXXXB

10. Interrupt Source, Interrupt Vector, and Interrupt Control Register

	El ² OS	Interrupt vector		Interrupt control register	
Interrupt source	clear	Number	Address	Number	Address
Reset	N/A	# 08	FFFFDCH		
INT9 instruction	N/A	# 09	FFFFD8H		
Exception	N/A	# 10	FFFFD4H		
CAN RX	N/A	# 11	FFFFD0H	10000	0000000
CAN TX/NS	N/A	# 12	FFFFCC _H	ICR00	0000В0н
External Interrupt (INT0/INT1)	*1	# 13	FFFFC8 _H	10001	0000001
Time Base Timer	N/A	# 14	FFFFC4 _H	ICR01	0000B1н
16-bit Reload Timer 0	*1	# 15	FFFFC0H	ICR02	0000000
8/10-bit A/D Converter	*1	# 16	FFFFBC H	ICR02	0000В2н
16-bit Free-run Timer	N/A	# 17	FFFFB8 _H	10000	0000000
External Interrupt (INT2/INT3)	*1	# 18	FFFFB4H	ICR03	0000 В Зн
Serial I/O	*1	# 19	FFFFB0H	ICR04	0000B4⊦
External Interrupt (INT4/INT5)	*1	# 20	FFFFAC H	ICR04	0000B4H
Input Capture 0	*1	# 21	FFFFA8H	ICR05	0000B5н
8/16-bit PPG 0/1	N/A	# 22	FFFFA4H	ICR05	
Output Compare 0	*1	# 23	FFFFA0H	ICR06	0000 В6 н
8/16-bit PPG 2/3	N/A	# 24	FFFF9CH		0000000
External Interrupt (INT6/INT7)	*1	# 25	FFFF98н	ICR07	0000 B7 н
Input Capture 1	*1	# 26	FFFF94н		0000071
8/16-bit PPG 4/5	N/A	# 27	FFFF90н	ICR08	0000B8н
Output Compare 1	*1	# 28	FFFF8CH	101000	0000B0H
8/16-bit PPG 6/7	N/A	# 29	FFFF88 _H	ICR09	0000 В 9н
Input Capture 2	*1	# 30	FFFF84 _H	101(09	0000898
8/16-bit PPG 8/9	N/A	# 31	FFFF80н	ICR10	0000ВАн
Output Compare 2	*1	# 32	FFFF7C _H		UUUUDAH
Input Capture 3	*1	# 33	FFFF78⊦	ICR11	0000BBн
8/16-bit PPG A/B	N/A	# 34	FFFF74 _H	юкт	0000BBA
Output Compare 3	*1	# 35	FFFF70н	ICR12	0000BCH
16-bit Reload Timer 1	*1	# 36	FFFF6C _H	101(12	0000000
UART 0 RX	*2	# 37	FFFF68н	ICR13	0000BDн
UART 0 TX	*1	# 38	FFFF64⊦		
UART 1 RX	*2	# 39	FFFF60н	ICR14	0000BEн
UART 1 TX	*1	# 40	FFFF5C _H		
Flash Memory	N/A	# 41	FFFF58⊦	ICR15	0000BFн
Delayed interrupt	N/A	# 42	FFFF54н		UUUUDI'H

*1: The interrupt request flag is cleared by the El²OS interrupt clear signal.

*2: The interrupt request flag is cleared by the El²OS interrupt clear signal. A stop request is available.

N/A:The interrupt request flag is not cleared by the EI2OS interrupt clear signal.

Notes:

- For a peripheral module with two interrupt for a single interrupt number, both interrupt request flags are cleared by the El²OS interrupt clear signal.
- At the end of EI²OS, the EI²OS clear signal will be asserted for all the interrupt flags assigned to the same interrupt number. If one interrupt flag starts the EI²OS and in the meantime another interrupt flag is set by hardware event, the later event is lost because the flag is cleared by the EI²OS clear signal caused by the first event. So it is recommended not to use the EI²OS for this interrupt number.
- If EI²OS is enabled, EI²OS is initiated when one of the two interrupt signals in the same interrupt control register (ICR) is asserted. This means that different interrupt sources share the same EI²OS Descriptor which should be unique for each interrupt source. For this reason, when one interrupt source uses the EI²OS, the other interrupt should be disabled.

11. Electrical Characteristics

11.1 Absolute Maximum Ratings

(Vss = AVss = 0.0 V)

Parameter	Symbol	Rat	ting	Unit	Remarks	
Parameter	Symbol	Min	Max	Unit	Remarks	
	Vcc	$V_{SS} - 0.3$	Vss + 6.0	V		
	AVcc	$V_{SS} - 0.3$	Vss + 6.0	V	Vcc = AVcc	*1
Power supply voltage	AVRH, AVRL	V _{SS} — 0.3	Vss + 6.0	V	AVcc ≥ AVRH/L, AVRH ≥ AVRL	*1
	DVcc	$V_{SS} - 0.3$	Vss + 6.0	V	Vcc ≥ DVcc	
Input voltage	Vi	$V_{SS} - 0.3$	Vss + 6.0	V		*2
Output voltage	Vo	$V_{SS} - 0.3$	Vss + 6.0	V		*2
Maximum Clamp Current		-2.0	2.0	mA	*6	
Maximum Total Clamp Current	∑ Iclamp	_	20	mA	*6	
"L" level Max. output current	IOL1	—	15	mA	Normal output	*3
"L" level Avg. output current	OLAV1	—	4	mA	Normal output, average value	*4
"L" level Max. output current	IOL2	—	40	mA	High current output	*3
"L" level Avg. output current	OLAV2	—	30	mA	High current output, average value	*4
"L" level Max. overall output current	∑lol1	—	100	mA	Total normal output	
"L" level Max. overall output current	∑lol2	—	330	mA	Total high current output	
"L" level Avg. overall output current	\sum IOLAV1	—	50	mA	Total normal output, average value	*5
"L" level Avg. overall output current	\sum Iolav2	_	250	mA	Total high current output, average value	*5
"H" level Max. output current	Іон1	—	—15	mA	Normal output	*3
"H" level Avg. output current	IOHAV1	—	-4	mA	Normal output, average value	*4
"H" level Max. output current	Іон2	—	-40	mA	High current output	*3
"H" level Avg. output current	IOHAV2	—	-30	mA	High current output, average value	*4
"H" level Max. overall output current	∑Іон1	—	-100	mA	Total normal output	
"H" level Max. overall output current	∑loh2	—	-330	mA	Total high current output	
"H" level Avg. overall output current	∑Iohav1	—	-50	mA	Total normal output, average value	*5
"H" level Avg. overall output current	∑Iohav2	_	-250	mA	Total high current output, average value	*5
Power consumption	Pp	_	500	mW	MB90F598G	
	FU	—	400	mW	MB90598G	
Operating temperature	TA	-40	+85	°C		
Storage temperature	Tstg	-55	+150	°C		

*1: AVcc, AVRH, AVRL and DVcc shall not exceed Vcc. AVRH and AVRL shall not exceed AVcc. Also, AVRL shall never exceed AVRH.

*2: VI and Vo should not exceed Vcc + 0.3V. VI should not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the IcLAMP rating supersedes the VI rating.

*3: The maximum output current is a peak value for a corresponding pin.

*4: Average output current is an average current value observed for a 100 ms period for a corresponding pin.

*5: Total average current is an average current value observed for a 100 ms period for all corresponding pins.

*6:

- Applicable to pins : P00 to P07, P10 to P17, P20 to P27, P30 to P37, P40 to P47, P50 to P57, P70 to P77, P80 to P87, P90 to P95
- Use within recommended operating conditions.
- Use at DC voltage (current) .
- The +B signal should always be applied with a limiting resistance placed between the +B signal and the microcontroller.

- The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller current is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on result.
- Care must be taken not to leave the +B input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, comparator input pins, etc.) cannot accept +B signal input.
- Sample recommended circuits :

Note: : Average output current = operating current × operating efficiency

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

11.2 Recommended Conditions

(Vss = AVss = 0.0 V)

Parameter	Symbol	Value			Unit	Remarks	
	Symbol	Min	Тур	Max	Unit	Reliai ks	
Power supply voltage	Vcc	4.5	5.0	5.5	V	Under normal operation	
Power supply vollage	AVcc	3.0	-	5.5	V	Maintains RAM data in stop mode	
Smooth capacitor	Cs	0.022	0.1	1.0	μF	*	
Operating temperature	TA	-40	—	+85	°C		

*: Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The smoothing capacitor to be connected to the Vcc pin must have a capacitance value higher than Cs.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

11.3 DC Characteristics

			(Vcc =	5.0 V±10%	%, Vss = /	AVss = 0.0) V, TA	$= -40 ^{\circ}$ C to +8
Demonster	Symbol	Pin name	Condition		Value	Unit	Domorko	
Parameter	Symbol			Min	Тур	Max	Unit	Remarks
Input H voltage	Vihs	CMOS hysteresis input pin	_	0.8 Vcc	_	Vcc +0.3	V	
	VIHM	MD input pin	—	Vcc - 0.3	_	Vcc +0.3	V	
Input L voltage		CMOS hysteresis input pin	_	Vss - 0.3	_	0.2 Vcc	V	
. Vilm	VILM	MD input pin	_	Vss - 0.3	-	Vss +0.3	V	
Output H	Vон1	Output pins except P70 to P87	Vcc = 4.5 V, Іон1 = -4.0 mA	Vcc - 0.5	_	_	V	
voltage	Vон2	P70 to P87	Vcc = 4.5 V, Іон ₂ = -30.0 mA	Vcc - 0.5	_	_	V	
Output L	Vol1	Output pins except P70 to P87	Vcc = 4.5 V, IoL1 = 4.0 mA	_	_	0.4	V	
voltage	Vol2	P70 to P87	Vcc = 4.5 V, Io∟₂ = 30.0 mA	_	_	0.5	V	

Parameter	Symbol	Pin name	Condition		Value	Unit	Remarks		
Farameter	Symbol	Fin name	Condition	Min	Тур	Max	Unit	Remarks	
Input leak current	lı.		Vcc = 5.5 V, Vss < Vi < Vcc	-5	_	5	μΑ		
	lcc		Vcc = 5.0 V±10%, Internal frequency:	_	35	60	mA	MB90598G	
	icc		16 MHz, At normal operating	—	40	60	mA	MB90F598G	
	lccs		Vcc = 5.0 V±10%, Internal frequency: 16 MHz, At sleep	_	11	18	mA		
Power supply current *	Істѕ	Vcc	Vcc = 5.0 V±1%, Internal frequency: 2 MHz, At timer mode	_	0.3	0.6	mA		
	Іссн		Vcc = 5.0 V±10%, At stop, T _A = 25°C	—	—	20	μΑ		
	Іссн2		Vcc = 5.0 V±10%, At Hardware stand-	_	_	20	μA	MB90598G	
	ICCH2		by mode, T _A = 25°C	_	50	100	μA	MB90F598G (Contu	

(Continued)			(Vcc =	5.0 V±10%	%, Vss = A	Vss = 0.0) V, TA =	= -40 °C to +8
Deveryoter	Symbol	Pin name	Condition		Value	Unit	Remarks	
Parameter	eter Symbol Pin name Condition Min T	Тур	Max	Unit	Nemarks			
Input capacity	Cin	Other than C, AVcc, AVss, AVRH, AVRL, Vcc, Vss, DVcc, DVss, P70 to P87	_	_	5	15	pF	
		P70 to P87	_	—	15	30	pF	
Pull-up resistance	Rup	RST	_	25	50	100	kΩ	
Pull-down resistance	Rdown	MD2	_	25	50	100	kΩ	

*: The power supply current testing conditions are when using the external clock.

11.4 AC Characteristics

11.4.1 Clock Timing

TT.4.1 Olock Tilling				$(V_{CC} = 5.0 \text{ V}\pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to} +850 ^{\circ}\text{C} to$					
Parameter	Symbol	Pin name	Value			Unit	Remarks		
Faidilielei			Min	Тур	Мах	Unit	Rellidiks		
Oscillation frequency	fc	X0, X1	3	—	5	MHz	When using oscillation circuit		
Oscillation cycle time	tCYL	X0, X1	200	—	333	ns	When using oscillation circuit		
External clock frequency	fc	X0, X1	3	—	16	MHz	When using external clock		
External clock cycle time	tCYL	X0, X1	62.5	—	333	ns	When using external clock		
Frequency deviation with PLL *	Δf	—	—	—	5	%			
Input clock pulse width	Pwh, Pwl	X0	10	—	—	ns	Duty ratio is about 30 to 70%.		
Input clock rise and fall time	tcr, tcf	X0	_	—	5	ns	When using external clock		
Machine clock frequency	fср	—	1.5	—	16	MHz			
Machine clock cycle time	tcp	—	62.5	—	666	ns			
Flash Read cycle time	tCYL	_	_	2*tCP	_	ns	When Flash is accessed via CPU		

*: Frequency deviation indicates the maximum frequency difference from the target frequency when using a multiplied clock.

Example of Oscillation circuit

AC characteristics are set to the measured reference voltage values below.

11.4.2 Reset and Hardware Standby Input

	$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$									
Parameter	ameter Symbol Pin name Value Ur		Unit	Remarks						
Faidilielei	Symbol	Finitianie	Min	Max	Unit	Remarks				
			16 tcp*1	-	ns	Under normal operation				
Reset input time	t rstl	RST	Oscillation time of oscillator ^{*2} + 16 t_{CP} ^{*1}	_	ms	In stop mode				
			16 tcp*1	_	ns	Under normal operation				
Hardware standby input time	tнsт∟	HST	Oscillation time of oscillator ^{*2} + 16 t_{CP}^{*1}	_	ms	In stop mode				

*1: "tcp" represents one cycle time of the machine clock.

No reset can fully initialize the Flash Memory if it is performing the automatic algorithm.

*2: Oscillation time of oscillator is time that the amplitude reached the 90%. In the crystal oscillator, the oscillation time is between several ms to tens of ms. In ceramic oscillator, the oscillation time is between hundreds of μs to several ms. In the external clock, the oscillation time is 0 ms.

11.4.3 Power On Reset

$(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 ^{\circ}\text{C} \text{ to} +85 ^{\circ}\text{C})$									
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks		
Falameter	Symbol	Fin name	Condition	Min	Max	Unit	Remarks		
Power on rise time	tR	Vcc		0.05	30	ms	*		
Power off time	toff	Vcc	—	50	—	ms	Due to repetitive operation		

*: Vcc must be kept lower than 0.2 V before power-on.

Notes:

- The above values are used for creating a power-on reset.
- Some registers in the device are initialized only upon a power-on reset. To initialize these registers, turn on the power supply using the above values.

11.4.4 UART0/1, Serial I/O Timing

Parameter	Parameter Symbol Pin name Co		Condition	Value		Unit	Remarks
raianicici	Symbol	Finnanie	Condition	Min	Max	Onit	Remarks
Serial clock cycle time	tscyc	SCK0 to SCK2		8 tcp	_	ns	
$SCK \downarrow \ \Rightarrow SOT \ delay \ time$	t slov	SCK0 to SCK2, SOT0 to SOT2	Internal clock operation	-80	80	ns	
Valid SIN \Rightarrow SCK \uparrow	tıvsн	SCK0 to SCK2, SIN0 to SIN2	output pins are C∟ = 80 pF + 1 TTL.	100	_	ns	
$SCK \uparrow \Rightarrow Valid\;SIN\;hold\;time$	tsнix	SCK0 to SCK2, SIN0 to SIN2		60		ns	

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
Farameter	Symbol	Fin hame	Condition	Min	Max	Unit	itemarks
Serial clock "H" pulse width	ts∺s∟	SCK0 to SCK2		4 tcp	_	ns	
Serial clock "L" pulse width	tslsh	SCK0 to SCK2		4 tcp	_	ns	
$SCK \downarrow \Rightarrow SOT$ delay time	tsLov	SCK0 to SCK2, SOT0 to SOT2	External clock operation output pins are $C_{L} = 80$	_	150	ns	
$Valid\;SIN\;\RightarrowSCK\;\uparrow$	tıvsн	SCK0 to SCK2, SIN0 to SIN2	pF + 1 TTL.	60	_	ns	
$SCK \uparrow \Rightarrow Valid \ SIN \ hold \ time$	tsнıx	SCK0 to SCK2, SIN0 to SIN2		60	_	ns	

Notes:

- AC characteristic in CLK synchronized mode.
- CL is load capacity value of pins when testing.
- t_{cp} (external operation clock cycle time) : see Clock timing.

(5) Timer Input Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Falameter	Symbol	Fin hame			Max	Unit	Remarks
Input pulse width	tтіwн	TIN0, TIN1		4 tcp	_	20	
	t⊤ıw∟	IN0 to IN3		4 ICP		ns	

11.4.5 Trigger Input Timing

 $(V_{CC} = 5.0 \text{ V} \pm 10\%, \text{ V}_{SS} = \text{AV}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Din namo	Pin name Condition		ue	Unit	Remarks	
Farameter	Symbol	Fill Hallie	Condition	Min	Мах	Unit	Remarks	
Input pulse width	tтrgн	INT0 to INT7,	_	5 tcp	_	ns	Under normal operation	
	t trgl	ADTG		1		μs	In stop mode	

11.4.6 Slew Rate High Current Outputs (MB90598G, MB90F598G only) $(V_{CO} - 5.0 V + 10.\% V_{SS} = AV_{SS}$

($V_{cc} = 5.0 \text{ V} \pm 10 \text{ \%}, \text{ Vss} = \text{AVss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40 \text{ °C to } +85 \text{ °C}$)									
Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks	I
Parameter	Symbol	Symbol Finname	Condition	Min	Тур	Max	Unit	Neillai K5	I
Output Rise/Fall time	tR2 tF2	Port P70 to P77, Port P80 to P87	_	15	40	150	ns		

11.5 A/D Converter

 $(V_{CC} = AV_{CC} = 5.0 \text{ V} \pm 10\%, \text{ Vss} = AV_{SS} = 0.0 \text{ V}, 3.0 \text{ V} \le AV_{RH} - AV_{RL}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Sym-	Pin name		Value		Unit	Remarks
Faiametei	bol	Fill fidilite	Min	Тур	Max	Unit	Reillarks
Resolution	—	—	_		10	bit	
Conversion error	—	—	_	—	±5.0	LSB	
Nonlinearity error	—	—	_	—	±2.5	LSB	
Differential linearity error	_	—	_	—	±1.9	LSB	
Zero transition voltage	Vот	AN0 to AN7	AVRL — 3.5 LSB	AVRL + 0.5 LSB	AVRL + 4.5 LSB	V	
Full scale transition voltage	VFST	AN0 to AN7	AVRH — 6.5 LSB	AVRH — 1.5 LSB	AVRH + 1.5 LSB	V	
Conversion time	—	—	_	352tcp	_	ns	
Sampling time	—	—	_	64tcp	_	ns	
Analog port input current	Iain	AN0 to AN7	-10	—	10	μΑ	
Analog input voltage range	Vain	AN0 to AN7	AVRL	—	AVRH	V	

Parameter	Sym-	Pin name		Value		Unit	Remarks
Faiametei	bol	Fill Hallie	Min	Тур	Max	Unit	
Poforonoo voltago rongo	—	AVRH	AVRL + 3.0	—	AVcc	V	
Reference voltage range	—	avrL	0	—	AVRH - 3.0	V	
Power supply current	la	AVcc	—	5	—	mA	
	Іан	AVcc	_		5	μA	*
Reference voltage current	lr	AVRH	_	400	600	μΑ	MB90V595G, MB90F598G
			_	140	600	μA	MB90598G
	Irh	AVRH			5	μA	*
Offset between input channels	_	AN0 to AN7	_	_	4	LSB	

* : When not operating A/D converter, this is the current ($V_{CC} = AV_{CC} = AVRH = 5.0$ V) when the CPU is stopped.

11.6 A/D Converter Glossary

Resolution: Analog changes that are identifiable with the A/D converter

Linearity error: The deviation of the straight line connecting the zero transition point ("00 0000 0000" ↔ "00 0000 0001") with the full-scale transition point ("11 1111 1110" ↔ "11 1111 1111") from actual conversion characteristics

Differential linearity error: The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error: The total error is defined as a difference between the actual value and the theoretical value, which includes zerotransition error/full-scale transition error and linearity error.

(Continued)

(Continued)

11.7 Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions,:

- Output impedance values of the external circuit of 15 k Ω or lower are recommended.
- When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.

When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \ \mu s$ @machine clock of 16 MHz).

Error

The smaller the |AVRH - AVRL|, the greater the error would become relatively.

11.8 Flash memory

Erase and programming performance

Parameter	Condition		Value		Unit	Remarks	
Falameter	Condition	Min	Тур	Max	Onit		
Sector erase time		-	1	15	s	MB90F598G	Excludes 00H programming prior erasure
Chip erase time	$T_A = +25 \ ^{\circ}C,$ $V_{CC} = 5.0 \ V$	_	5	_	s	MB90F598G	Excludes 00H programming prior
Word (16-bit) programming time		_	16	3600	μs	MB90F598G	Excludes system-level overhead
Erase/Program cycle	—	10000	_	_	cycle		

12. Example Characteristics

Supply Current

13. Ordering Information

Part number	Package	Remarks
MB90598GPF MB90F598GPF	100-pin Plastic QFP (FPT-100P-M06)	
MB90V595GCR	256-pin Ceramic PGA (PGA-256C-A01)	For evaluation

14. Package Dimensions

15. Major Changes

Spansion Publication Number: DS07-13705-7E

Section	Change Results
-	Deleted the old products, MB90598, MB90F598, and MB90V595.
-	Changed the series name; MB90595/595G series ? MB90595G series
-	Changed the following erroneous name. I/O timer \rightarrow 16-bit Free-run Timer
PRODUCT LINEUP	One of Standby mode name is changed. Clock mode \rightarrow Watch mode
I/O CIRCUIT TYPE	Changed Pull-down resistor value of circuit type H.
ELECTRICAL CHARACTERISTICS AC Characteristics	Add the "External clock input" and "Flash Read cycle time" in (1) Clock Timing
	Figure in (2) Reset and Hardware Standby Input RST/HST input level of "In Stop Mode" is changed. 0.6 Vcc $0.2~Vcc$
ELECTRICAL CHARACTERISTICS 5. A/D Converter	Changed the items of "Zero transition voltage" and "Full scale transition voltage".

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB90598G/F598G/V595G F²MC-16LX MB90595G Series CMOS 16-bit Proprietary Microcontroller Document Number: 002-07700 Orig. of Change Submission Revision ECN **Description of Change** Date ** _ AKIH 09/26/2008 Migrated to Cypress and assigned document number 002-07700. No change to document contents or format. *A 5537128 AKIH 11/30/2016 Updated to Cypress template

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2008-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress bereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or systems, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to as Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.